首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrinsic fluorescence emission of intact oxy hemoglobins   总被引:1,自引:0,他引:1  
Fluorescence has not been previously detected in intact hemoproteins. We have been able to measure significant fluorescence emission in purified oxy HbA using front-face fluorometry. The excitation maximum (293 nm), the emission maximum (325 nm) and the fluorescence spectra of Hb Rothschild (β 37 Trp → Arg) allows us to conclude that β 37 Trp is primarily responsible for the fluorescence signal of HbA. We propose that this intrinsic fluorescence of hemoglobin may be used as a probe to study conformational changes in hemoglobin and possibly other heme-containing proteins.  相似文献   

2.
In the past, fluorescence emission from an extrinsic fluorophore bound to heme-proteins would only be studied with the removal of the heme since fluorescence from the fluorophore could not be detected using right-angle optics. Using front-face fluorometry, a significant steady state emission signal originating from the probe bound to hemoglobin is detected. This is the first report of the detection of extrinsic fluorescence of a probe bound to a heme-protein. We also demonstrate that the extrinsic probe, 5-iodoacetamidofluorescein, is covalently bound to hemoglobin, specifically at beta 93 Cysteine. Ligand binding results in a change in the fluorophore fluorescence intensity as predicted by hemoglobin crystallographic studies. Efficiency of energy transfer measurements are made.  相似文献   

3.
The intrinsic fluorescence of hemoglobins is known to respond to ligand-induced changes in the quaternary structure of the protein. Carp hemoglobin is an interesting model to study the quaternary transition since its R----T equilibrium is pH-dependent and at low pH, in the presence of organic phosphate, it remains in the T or 'deoxy' quaternary structure, even when saturated with ligand. In this study, using front-face fluorometry, we show that the intrinsic fluorescence intensity exhibited by carp carboxyhemoglobin increases as the pH is lowered below 6.5 in the presence of inositol hexaphosphate. At low pH, carp methemoglobin is less affected by the addition of inositol hexaphosphate than is the CO derivative, while little or no change is observed in the met-azide derivative. We conclude: (1) the exact nature of the R to T state transition induced by inositol hexaphosphate differs for carp carboxy-, met- and met-azide hemoglobin derivatives; (2) the chromophores responsible for the changes observed with absorption spectroscopy may not be the same as those chromophores responsible for the fluorescence differences; and (3) alpha 46-Trp is tentatively assigned as one source of fluorescence emission. Furthermore, fluorescence properties of carp hemoglobin are compared to those of human hemoglobin.  相似文献   

4.
R E Hirsch  M J Lin  C M Park 《Biochemistry》1989,28(4):1851-1855
In erythropoietic protoporphyria and lead poisoning, free protoporphyrin (PPIX) and zinc protoporphyrin (ZPP), respectively, accumulate in erythrocytes. That PPIX and ZPP bind to human hemoglobin A (Hb4) is established, but the site of binding is still a matter of controversy. We investigated the interaction of ZPP with intact, tetrameric oxy Hb4, using batch microcalorimetry, front-face fluorometry, absorption difference spectroscopy, oxygen equilibrium studies, and isoelectric focusing (IEF). In the presence of oxy Hb4 (pH 7.35, 0.05 M phosphate), the fluorescence emission maximum (excitation at 420 nm) of ZPP immediately shifts from 587 nm (ZPP alone) to 594 nm, as expected when binding to protein. The fluorescence intensity increases with time and is correlated with the ZPP:Hb4 mole ratio. A slow, time-dependent reaction is also observed with microcalorimetry: the rate of heat of reaction exhibits both a fast and a slow component. The heats of reaction range from -2.1 to -14.8 mcal depending upon the ZPP:Hb4 ratio of 4:1 (0.4 mM:0.1 mM) to 38:1 (3.8 mM:0.1 mM), respectively, and are typical of weak, noncovalent protein-ligand interactions. The optical difference spectra are a function of the ZPP:Hb4 molar ratio and also exhibit a slow increase in intensity over time. No time-dependent optical difference spectra are observed with ZPP or with Hb4 alone. The oxygen affinity of Hb4 in the presence of ZPP decreases with increasing mole ratio. During IEF, all ZPP separates from Hb4, consistent with a weak, noncovalent interaction at a non-heme pocket site. We conclude that ZPP binds to intact, tetrameric hemoglobin at non-heme pocket sites in a nonspecific, weak, noncovalent interaction.  相似文献   

5.
The steady-state fluorescence properties of the multisubunit hemoglobin isolated from the earthworm, Lumbricus terrestris, were studied by front-face fluorometry. Acid and alkaline dissociation of this high-molecular-weight hemoglobin were examined over the pH range 3.7-12.5 using different liganded states (oxy, CO, met). The relative intensity of the emission maximum at 320 nm (exc. 280 nm) is ligand-dependent increasing as follows: oxy less than deoxy less than CO less than met at pH 7.0. The intensity of the emission maximum of oxyhemoglobin at the alkaline acid end point, pH 10.5 (333 nm), is significantly greater than that observed at the acid end point, pH 4.18 (320 nm), suggesting different subunit dissociation. The spectra of oxyhemoglobin at pH 4.18 and the spectrum of carbonmonoxy hemoglobin at pH 7.0 in the presence of 1 M magnesium chloride were almost identical, indicating similar subunit dissociation. Difference spectrum (pH 9.0-7.2) of fluorescence emission (exc. 305) resulted in a maximum at 341 nm, indicative of tyrosinate formation. This suggests that tyrosine(s) may also be located at the subunit interface(s) of this hemoglobin. These studies indicate that several aromatic amino acid residues are associated with the critical sites of subunit interactions within this molecule. Analysis of the fluorescence spectra also suggests that the formation of different subunit species resulting from acid and alkaline dissociation cannot be ruled out.  相似文献   

6.
Time-resolved emission spectra of hemoglobin on the picosecond time scale   总被引:2,自引:0,他引:2  
We used front-face illumination to examine the steady-state and time-resolved emission from the intrinsic tryptophan emission of human hemoglobin (Hb). Experimental conditions were identified which eliminated all contributions of scattered light. The sensitivity obtained using front-face optics was adequate to allow measurement of the wavelength-dependent frequency response of the emission to 2 GHz. The intensity decays displayed pico- and nanosecond components in the emission at all wavelengths from 315 to 380 nm. The contribution of the picosecond component decreased from 72 to 37% over this range of wavelengths. Frequency-domain measurements were used to calculate the time-resolved emission spectra and decay-associated emission spectra. These spectra indicate that the picosecond components of the emission display maxima near 320 nm, whereas the nanosecond components are centered at longer wavelengths near 335 nm. The nanosecond components appear to be due to residual impurities which remain even in highly purified samples of Hb. However, we cannot eliminate the possibility that some of these components are due to Hb itself.  相似文献   

7.
Front-face fluorometry can detect steady-state intrinsic fluorescence of hemoglobins (R. E. Hirsch, R. S. Zukin, and R. L. Nagel, 1980, Biochem. Biophys. Res. Commun. 93, 432-439), a property that can be used to study the dimerization of human hemoglobins (R. E. Hirsch, N. A. Squires, C. Discepola, and R. L. Nagel, 1983, Biochem. Biophys. Res. Commun. 116, 712-718). We report that the stable dimeric hemoglobin components of the arcid clams Noetia ponderosa and Anadara ovalis exhibit fluorescence emission maxima shifted to longer wavelengths compared to tetrameric human hemoglobin. Conversely, the tetrameric major hemoglobin (Hb) component of A. ovalis exhibits an emission maximum similar to that of tetrameric Hb A. Hence, stable dimeric hemoglobins can be detected by emission maxima at longer wavelengths relative to Hb A. Fluorescence studies of ligand binding to these clam hemoglobins indicate structural and functional differences among these components and compared to Hb A. We conclude that different stable aggregation states of hemoglobins may be determined by intrinsic fluorescence when studied with front-face optics.  相似文献   

8.
Based upon existing crystallographic evidence, HbS, HbC, and HbA have essentially the same molecular structure. However, important areas of the molecule are not well defined crystallographically (e.g. the N-terminal nonhelical portion of the alpha and beta chains), and conformational constraints differ in solution and in the crystalline state. Over the years, our laboratory and others have provided evidence of conformational changes in HbS and, more recently, in HbC. We now present data based upon allosteric perturbation monitored by front-face fluorescence, ultraviolet resonance Raman spectroscopy, circular dichroism, and oxygen equilibrium studies that confirm and significantly expand previous findings suggesting solution-active structural differences in liganded forms of HbS and HbC distal to the site of mutation and involving the 2,3-diphosphoglycerate binding pocket. The liganded forms of these hemoglobins are of significant interest because HbC crystallizes in the erythrocyte in the oxy form, and oxy HbS exhibits increased mechanical precipitability and a high propensity to oxidize. Specific findings are as follows: 1) differences in the intrinsic fluorescence indicate that the Trp microenvironments are more hydrophobic for HbS > HbC > HbA, 2) ultraviolet resonance Raman spectroscopy detects alterations in Tyr hydrogen bonding, in Trp hydrophobicity at the alpha1beta2 interface (beta37), and in the A-helix (alpha14/beta15) of both chains, 3) displacement by inositol hexaphosphate of the Hb-bound 8-hydroxy-1,3,6-pyrenetrisulfonate (the fluorescent 2,3-diphosphoglycerate analog) follows the order HbA > HbS > HbC, and 4) oxygen equilibria measurements indicate a differential allosteric effect by inositol hexaphosphate for HbC approximately HbS > HbA.  相似文献   

9.
We have found that the intrinsic fluorescence emission maxima of oxy, met, and cyanmet hemoglobins have a concentration dependent shift to longer wavelengths. For oxy-hemoglobin, this effect is increased in the presence of 3M NaCl. At the protein concentrations studied, these liganded hemoglobins undergo dimerization. In contrast, horse-heart met myoglobin (which is a monomer), and deoxy Hb A and Hb Beth Israel (that have greatly decreased dissociation constants), exhibited a significantly smaller shift in fluorescence maxima. We conclude that hemoglobin dimers exhibit a bathochromic shift with respect to the tetramer. This shift is probably due to the increase in surface exposure of β 37 Trp that occurs during hemoglobin dimerization.  相似文献   

10.
Effector binding to liganded hemoglobin (Hb) provides a new understanding of structural determinants of Hb function. L35, a bezafibrate-related compound, is one of the more potent synthetic regulators of Hb oxygen (O(2)) affinity. In the presence of inositol hexaphosphate and bezafibrate (or derivatives), liganded Hb at low pH (pH approximately 6.5) exhibits extremely low O(2) affinity and very low cooperativity. In this study, the nature of L35 binding to COHbA at pH 6.35, an altered R-state, is presented. Solution-active site-specific spectroscopic probings by front-face fluorescence and circular dichroism reveal that L35 induces a global heterogeneous conformation in COHbA at pH 6.35 that includes: a T-like structural feature at the alpha1beta2 interface; an R-like structural feature within the heme environment; and an intermediate-like state at the central cavity. These long-range structural perturbations appear to stem from L35 binding to two classes of binding sites: the central cavity (primarily at the alphaalpha cleft) and the surface. These results indicate that L35 induces an allosteric transition species, characterized by domain-specific tertiary and quaternary-like conformation within a global R-quaternary structure.  相似文献   

11.
Li R  Nagai Y  Nagai M 《Chirality》2000,12(4):216-220
The CD band of human adult hemoglobin (Hb A) at 280 approximately 290 nm shows a pronounced change from a small positive band to a definite negative band on the oxy (R) to deoxy (T) structural transition. This change has been suggested to be due to environmental alteration of Tyrs (alpha42, alpha140, and beta145) or beta37 Trp residues located at the alpha1beta2 subunit interface by deoxygenation. In order to evaluate contributions of alpha140Tyr and beta37Trp to this change of CD band, we compared the CD spectra of two mutant Hbs, Hb Rouen (alpha140Tyr-->His) and Hb Hirose (beta37Trp-->Ser) with those of Hb A. Both mutant Hbs gave a distinct, but smaller negative CD band at 287nm in the deoxy form than that of deoxyHb A. Contributions of alpha140Tyr and beta37Trp to the negative band at the 280 approximately 290 nm region were estimated from difference spectra to be 30% and 26%, respectively. These results indicate that the other aromatic amino acid residues, alpha42Tyr and beta145Tyr, at the alpha1beta2 interface, are also responsible for the change of the CD band upon the R-->T transition of Hb A.  相似文献   

12.
The antagonist carazolol has been used as a fluorescent probe for the binding site of the beta-adrenergic receptor (beta AR). The fluorescence properties of carazolol are dominated by the emission of the carbazole group, with the fine structure of the spectrum, but not the quantum yield, sensitive to the environment of the probe. The fluorescence emission spectrum of the bound probe is consistent with an extremely hydrophobic environment in the binding site of the receptor. Binding of carazolol to the purified beta AR increases the polarization of the fluorophore. Exposure to collisional quenchers has demonstrated the bound carazolol to be completely inaccessible to the solvent. Furthermore, the fluorescence of bound carazolol is not quenched by exposure to sodium nitrite, a F?rster energy acceptor which has an R0 value of 11.7 A with carazolol. Thus, physical analysis of the binding site of the beta AR by carazolol fluorescence indicates that the antagonist binds to the beta AR in a rigid hydrophobic environment which is buried deep within the core of the protein.  相似文献   

13.
Bis(3,5-dibromosalicyl) fumarate was used to crosslink hemoglobin both in the oxy and deoxy states. This double headed diaspirin was known to crosslink oxy Hb A selectively between Lys 82 beta 1 and Lys 82 beta 2 (Walder, J. A., et al. (1979) Biochemistry 18, 4265) and deoxy Hb A between Lys 99 alpha 1 and Lys 99 alpha 2 (Chatterjee R. Y., et al. (1986) J. Biol. Chem. 261, 9929). The autoxidation at 37 degrees C of oxy alpha 99 crosslinked hemoglobin was found to be 1.8 times as fast as that of Hb A while that of the oxy beta 82 crosslinked hemoglobin was only 1.2 times as fast. After 5 hours the formation of methemoglobin in the alpha crosslinked Hb A is 21.3% compared to 10.8% in beta crosslinked Hb A and 6.4% in Hb A. These results may effect the proposed use of alpha 99 crosslinked hemoglobin as a blood substitute by demonstrating the need for protection from autoxidation during storage.  相似文献   

14.
Jana S  Dalapati S  Ghosh S  Guchhait N 《Biopolymers》2012,97(10):766-777
The nature of binding of specially designed charge transfer (CT) fluorophore at the hydrophobic protein interior of human serum albumin (HSA) has been explored by massive blue-shift (82 nm) of the polarity sensitive probe emission accompanying increase in emission intensity, fluorescence anisotropy, red edge excitation shift, and average fluorescence lifetimes. Thermal unfolding of the intramolecular CT probe bound HSA produces almost opposite spectral changes. The spectral responses of the molecule reveal that it can be used as an extrinsic fluorescent reporter for similar biological systems. Circular dichrosim spectra, molecular docking, and molecular dynamics simulation studies scrutinize this binding process and stability of the protein probe complex more closely.  相似文献   

15.
Several metmyoglobins (red kangaroo, horse and sperm whale), containing different numbers of tyrosines, but with invariant tryptophan residues (Trp-7, Trp-14), exhibit intrinsic fluorescence when studied by steady-state front-face fluorometry. The increasing tyrosine content of these myoglobins correlates with a shift in emission maximum to shorter wavelengths with excitation at 280 nm: red kangaroo (Tyr-146) emission maximum 335 nm; horse (Tyr-103, -146) emission maximum 333 nm; sperm whale (Tyr-103, -146, -151) emission maximum 331 nm. Since 280 nm excites both tyrosine and tryptophan, this strongly suggests that tyrosine emission is not completely quenched but also contributes to this fluorescence emission. Upon titration to pH 12.5, there is a reversible shift of the emission maximum to longer wavelengths with an increase greater than 2-fold in fluorescence intensity. With excitation at 305 nm, a tyrosinate-like emission is detected at a pH greater than 12. These studies show that: (1) metmyoglobins, Class B proteins containing both tyrosine and tryptophan residues, exhibit intrinsic fluorescence; (2) tyrosine residues also contribute to the observed steady-state fluorescence emission when excited by light at 280 nm; (3) the ionization of Tyr-146 is likely coupled to protein unfolding.  相似文献   

16.
Hemocyanins are large respiratory proteins of arthropods and mollusks, which bind oxygen with very high cooperativity. Here, we investigated the relationship between oxygen binding and structural changes of the 24-mer tarantula hemocyanin. Oxygen binding of the hemocyanin was detected following the fluorescence intensity of the intrinsic tryptophans. Under the same conditions, structural changes were monitored by the non-covalently bound fluorescence probe Prodan (6-propionyl-2-(dimethylamino)-naphthalene), which is very sensitive to its surroundings. Upon oxygen binding of the hemocyanin a red shift of 5 nm in the emission maximum of the label was observed. A comparison of oxygen binding curves recorded with tryptophan and Prodan emission revealed that structural changes in tarantula hemocyanin lag behind oxygen binding at the beginning of oxygenation. Analyses based on the nested two-state model, which describes cooperative oxygen binding of hemocyanins, indicated that the transition monitored by Prodan emission is closely related to one of the four conformations (rR) predicted for the allosteric unit. Earlier, the allosteric unit of tarantula hemocyanin was found to be the 12-mer half-molecule. Here, fluorescence titration revealed that the number of Prodan binding sites/24-mer tarantula hemocyanin is approximately 2, matching the number of allosteric units/hemocyanin. Based on the agreement between oxygen binding curves and fluorescence titration we concluded that Prodan monitors a conformational transition of the allosteric unit.  相似文献   

17.
CC individuals, homozygous for the expression of beta(C)-globin, and SC individuals expressing both beta(S) and beta(C)-globins, are known to form intraerythrocytic oxy hemoglobin tetragonal crystals with pathophysiologies specific to the phenotype. To date, the question remains as to why HbC forms in vivo crystals in the oxy state and not in the deoxy state. Our first approach is to study HbC crystallization in vitro, under non-physiological conditions. We present here a comparison of deoxy and oxy HbC crystal formation induced under conditions of concentrated phosphate buffer (2g% Hb, 1. 8M potassium phosphate buffer) and viewed by differential interference contrast microscopy. Oxy HbC formed isotropic amorphous aggregates with subsequent tetragonal crystal formation. Also observed, but less numerous, were twisted, macro-ribbons that appeared to evolve into crystals. Deoxy HbC also formed aggregates and twisted macro-ribbon forms similar to those seen in the oxy liganded state. However, in contrast to oxy HbC, deoxy HbC favored the formation of a greater morphologic variety of aggregates including polymeric unbranched fibers in radial arrays with dense centers, with infrequent crystal formation in close spatial relation to both the radial arrays and macroribbons. Unlike the oxy (R-state) tetragonal crystal, deoxy HbC formed flat, hexagonal crystals. These results suggest: (1) the Lys substitution at beta6 evokes a crystallization process dependent upon ligand state conformation [i. e., the R (oxy) or T (deoxy) allosteric conformation]; and (2) the oxy ligand state is thermodynamically driven to a limited number of aggregation pathways with a high propensity to form the tetragonal crystal structure. This is in contrast to the deoxy form of HbC that energetically equally favors multiple pathways of aggregation, not all of which might culminate in crystal formation.  相似文献   

18.
beta 1-Bungarotoxin has only one tryptophan residue, namely Trp-19 in the phospholipase A2 subunit. The environment of Trp-19 was studied by intrinsic fluorescence and solute quenching. The native protein showed an emission peak at 330 nm. About 90% of the fluorescent tryptophan was accessible to quenching by either acrylamide or KI but not to CsCl. A red-shift in the emission peak occurred between 2.0 M- and 4.0 M-guanidinium chloride, and the helix-coil transition of the polypeptide backbone occurred between 4.0 M- and 6.0 M-guanidinium chloride. These results suggested that Trp-19 was in a less polar medium but near a positive charge. The local conformation around Trp-19 could be disturbed by binding of Tb3+ or Ca2+ or Sr2+ to the toxin molecule. Tb3+ a tervalent lanthanide ion, effectively substituted for Ca2+ in stimulating the phospholipase A2 activity of beta 1-bungarotoxin. Upon the binding of Tb3+ to the toxin, the Tb3+ fluorescence in the 450-650 nm region was enhanced. This resulted from the energy transfer from Trp-19 to Tb3+. The distance between the energy-transfer pair was estimated to be 0.376-0.473 nm at pH 7.6 and 0.486-0.609 nm at pH 6.3. Assuming that there were two Tb3+-binding sites on the toxin molecule, at pH 7.6 the association constants of the high-affinity and the low-affinity sites were determined to be 3.82 x 10(3) M-1 and 2.85 x 10(2) M-1 respectively. At between pH 6.0 and 7.0 Tb3+ bound to the high-affinity site decreased greatly but did not disappear entirely. Both Ca2+ and Sr2+ competed with Tb3+ at the high-affinity sites, but Sr2+ could not substitute for Ca2+ in stimulating the phospholipase A2 activity.  相似文献   

19.
The peroxidatic activity of hemoglobin (Hb) is known to be enhanced when this hemoprotein is bound to haptoglobin (Hp). The peroxidatic reaction (H2O2, guaiacol as donor) has been kinetically studied (Steady-state) in the presence of free or rabbit-haptoglobin bound human hemoglobin and some of its derivatives, all in ferricyano-form. With free Hb+ CN, we observed linearity of Lineweaver and Burk plots in a wide range of concentrations, the donor's behaviour was therefore assumed to obey the Michaelis-Menten mechanism. When Hp-Hb+ CN is the enzyme, the donor's behaviour is more complicated, analysis shows the existence of two kinds of donor's binding sites. The possibility whether this behaviour might correspond to the intrinsic properties of Hb chains, as revealed after combination with Hp, was examined. The peroxidatic activity of free and Hp-bound alpha and beta chains of Hb were studied. The alpha chains of Hb combine with Hp whereas the beta chains fail to do so. In order to make useful comparisons, the peroxidatic activity of Hp-bound alpha and beta chains were studied by the use of Hp-semihemoglobin complexes where the semihemoglobins carried heme on only one type of chain (alpha or beta). Results did not show an evident correlation between the activities of the two free or bound types of chains and those of the two classes of binding sites revealed in Hp-Hb+ CN. Moreover, it appeared that the heme-free complementary chain might influence the activity of the heme-carrying alpha or beta chain in semihemoglobins and Hp-semihemoglobin complexes. The binding or protoporphyrin on free and Hp-bound semihemoglobins leads to species which exhibit structures close to that of Hb and Hp-Hb complex respectivley. Results of studies on these derivatives brought up new interesting data : when the porphyrin ring alone is bound to the heme deficient chains (alpha or beta), in Hp-semihemoglobin complexes, the same peculiar behaviour, already observed with Hp-Hb complex, is found again. The structural implications of these results are discussed.  相似文献   

20.
A fluorescent derivative of 6-mercaptoguanosine, S-(N-dansylaminoethyl)-6-mercaptoguanosine, was synthesized, and found to be a strong inhibitor of the uridine transport system of erythrocyte (Ki approximately 0.3 microM). The emission spectrum of this compound has peaks at 400 and 550 nm. The emission at 550, but not that a 400 nm, in environment-sensitive. A method was devised for preparing a suspension of erythrocyte-membrane fragments with sufficiently low light scattering so that a detailed study could be made of the fluorescence of the probe when bound to membranes. Direct binding measurements showed the existence of a tight binding site, with a dissociation constant of the same order of magnitude as the inhibition constant. Binding of probe and substrate are not mutually exclusive, but the fluorescence and affinity of the bound probe are sensitive to the presence of uridine. The emission spectrum suggests that the bound probe penetrates into the bilayer region of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号