首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The leukocyte-specific integrin, LFA-1, plays a critical role in trafficking of T cells to both lymphoid and nonlymphoid tissues. However, the role of LFA-1 in T cell activation in vivo has been less well understood. Although there have been reports describing LFA-1-deficient T cell response defects in vivo, due to impaired migration to lymphoid structures and to sites of effector function in the absence of LFA-1, it has been difficult to assess whether T cells also have a specific activation defect in vivo. We examined the role of LFA-1 in CD4(+) T cell activation in vivo by using a system that allows for segregation of the migration and activation defects through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 Ag-specific TCR transgenic mice into wild-type BALB/c mice. We find that in addition to its role in trafficking to peripheral lymph nodes, LFA-1 is required for optimal CD4(+) T cell priming in vivo upon s.c. immunization. CD18(-/-) DO11.10 CD4(+) T cells primed in the lymph nodes demonstrate defects in IL-2 and IFN-gamma production. In addition, recipient mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate a defect in OVA-specific IgG2a production after s.c. immunization. The defect in priming of CD18(-/-) CD4(+) T cells persists even in the presence of proliferating CD18(+/-) CD4(+) T cells and in lymphoid structures to which there is no migration defect. Taken together, these results demonstrate that LFA-1 is required for optimal CD4(+) T cell priming in vivo.  相似文献   

2.
Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo   总被引:10,自引:0,他引:10  
CD4+CD25+ regulatory T cells have been extensively studied during the last decade, but how these cells exert their regulatory function on pathogenic effector T cells remains to be elucidated. Naive CD4+ T cells transferred into T cell-deficient mice strongly expand and rapidly induce inflammatory bowel disease (IBD). Onset of this inflammatory disorder depends on IFN-gamma production by expanding CD4+ T cells. Coinjection of CD4+CD25+ regulatory T cells protects recipient mice from IBD. In this study, we show that CD4+CD25+ regulatory T cells do not affect the initial activation/proliferation of injected naive T cells as well as their differentiation into Th1 effectors. Moreover, naive T cells injected together with CD4+CD25+ regulatory T cells into lymphopenic hosts are still able to respond to stimuli in vitro when regulatory T cells are removed. In these conditions, they produce as much IFN-gamma as before injection or when injected alone. Finally, when purified, they are able to induce IBD upon reinjection into lymphopenic hosts. Thus, prevention of IBD by CD4+CD25+ regulatory T cells is not due to deletion of pathogenic T cells, induction of a non reactive state (anergy) among pathogenic effector T cells, or preferential induction of Th2 effectors rather than Th1 effectors; rather, it results from suppression of T lymphocyte effector functions, leading to regulated responses to self.  相似文献   

3.
Effector T cells generated in the mesenteric lymph nodes (mLN) are known to accumulate in mLN and the tissue drained by them after circulating in the blood. Their accumulation is due less to preferential entry into mLN but more to preferential proliferation within mLN. The factors regulating the proliferation of effector T cells in vivo are unclear, and it is unknown whether they are different for CD4(+) and CD8(+) effector T cells. Rat T cells from mLN or peripheral lymph nodes (pLN) were stimulated polyclonally via the TCR and CD28 and injected i.v. into congenic recipients. Using three-color flow cytometry and immunohistochemistry, they were identified in mLN, pLN, and blood over time, and proliferation was determined by measuring bromodeoxyuridine incorporation. Only effector mLN T cells showed a significantly increased proliferation rate after entry into mLN compared with that in pLN (2.4 +/- 1.8% vs 0.8 +/- 0.4%). Proliferation among the injected cells was higher when they had contact with dendritic cells within mLN (9.0 +/- 4.3%) than when they did not (4.1 +/- 2.1%). Furthermore, effector mLN T cells which were observed 56 days after injection maintained the capacity for preferential proliferation within mLN. Interestingly, CD4(+) effector mLN T cells proliferated at a higher rate (4.8 +/- 0.7%), remaining in mLN, whereas CD8(+) effector mLN T cells proliferated at a lower rate (3.3 +/- 1.0%) and were able to leave the mLN into the blood. Elucidating the factors regulating the proliferation of effector T cells in vivo will help to modify their distribution for therapeutic purposes.  相似文献   

4.
A deficiency of CD4+CD25+ regulatory T cells (CD25+ Tregs) in lymphopenic mice can result in the onset of autoimmune gastritis. The gastric H/K ATPase alpha (H/Kalpha) and beta (H/Kbeta) subunits are the immunodominant autoantigens recognized by effector CD4+ T cells in autoimmune gastritis. The mechanism by which CD25+ Tregs suppress autoimmune gastritis in lymphopenic mice is poorly understood. To investigate the antigenic requirements for the genesis and survival of gastritis-protecting CD25+ Tregs, we analyzed mice deficient in H/Kbeta and H/Kalpha, as well as a transgenic mouse line (H/Kbeta-tsA58 Tg line 224) that lacks differentiated gastric epithelial cells. By adoptive transfer of purified T cell populations to athymic mice, we show that the CD25+ Treg population from mice deficient in either one or both of H/Kalpha and H/Kbeta, or from the H/Kbeta-tsA58 Tg line 224 mice, is equally effective in suppressing the ability of polyclonal populations of effector CD4+ T cells to induce autoimmune gastritis. Furthermore, CD25+ Tregs, from either wild-type or H/Kalpha-deficient mice, dramatically reduced the expansion of pathogenic H/Kalpha-specific TCR transgenic T cells and the induction of autoimmune gastritis in athymic recipient mice. Proliferation of H/Kalpha-specific T cells in lymphopenic hosts occurs predominantly in the paragastric lymph node and was dependent on the presence of the cognate H/Kalpha Ag. Collectively, these studies demonstrate that the gastritis-protecting CD25+ Tregs do not depend on the major gastric Ags for their thymic development or their survival in the periphery, and that CD25+ Tregs inhibit the Ag-specific expansion of pathogenic T cells in vivo.  相似文献   

5.
We previously reported that Vbeta3+ CD4+ T cells maintained a protracted expansion, with the phenotypes of memory Th2 cells, for 30 days in C57BL/6 (B6) mice implanted with SEA-containing mini-osmotic pumps. In the present study, we followed the fate of Vbeta3+ CD4+ T cells in CD28-/- mice. Vbeta3+ CD4+ T cells increased to a degree similar to that of B6 Vbeta3+ CD4+ T cells until day 10 after implantation, then declined rapidly reaching the control level by 28 days. Remaining Vbeta3+ CD4+ T cells at that time did not exhibit memory phenotypes nor Th2-deviated responses. The rapid drop in Vbeta3+ CD4+ T cells in CD28-/- mice was attributable to upregulated induction of apoptosis owing to marginal inductions of Bcl-2 and Bcl-xL. Collectively, these data indicate CD28 to play critical roles in the generation and maintenance of SEA-reactive CD4+ T cells in vivo.  相似文献   

6.
Germline encoded pattern recognition receptors, such as TLRs, provide a critical link between the innate and adaptive immune systems. There is also evidence to suggest that pathogen-associated molecular patterns may have the capacity to modulate immune responses via direct effects on CD4+ T cells. Given the key role of both CD4+CD25+ T regulatory (Treg) cells and the TLR5 ligand flagellin in regulating mucosal immune responses, we investigated whether TLR5 may directly influence T cell function. We found that both human CD4+CD25+ Treg and CD4+CD25- T cells express TLR5 at levels comparable to those on monocytes and dendritic cells. Costimulation of effector T cells with anti-CD3 and flagellin resulted in enhanced proliferation and production of IL-2, at levels equivalent to those achieved by costimulation with CD28. In contrast, costimulation with flagellin did not break the hyporesponsiveness of CD4+CD25+ Treg cells, but rather, potently increased their suppressive capacity and enhanced expression of FOXP3. These observations suggest that, in addition to their APC-mediated indirect effects, TLR ligands have the capacity to directly regulate T cell responses and modulate the suppressive activity of Treg cells.  相似文献   

7.
Progression of spontaneous autoimmune diabetes is associated with development of a disease-countering negative-feedback regulatory loop that involves differentiation of low-avidity autoreactive CD8(+) cells into memory-like autoregulatory T cells. Such T cells blunt diabetes progression by suppressing the presentation of both cognate and noncognate Ags to pathogenic high-avidity autoreactive CD8(+) T cells in the pancreas-draining lymph nodes. In this study, we show that development of autoregulatory CD8(+) T cell memory is CD4(+) T cell dependent. Transgenic (TG) NOD mice expressing a low-affinity autoreactive TCR were completely resistant to autoimmune diabetes, even after systemic treatment of the mice with agonistic anti-CD40 or anti-4-1BB mAbs or autoantigen-pulsed dendritic cells, strategies that dramatically accelerate diabetes development in TG NOD mice expressing a higher affinity TCR for the same autoantigenic specificity. Furthermore, whereas abrogation of RAG-2 expression, hence endogenous CD4(+) T cell and B cell development, decelerated disease progression in high-affinity TCR-TG NOD mice, it converted the low-affinity TCR into a pathogenic one. In agreement with these data, polyclonal CD4(+) T cells from prediabetic NOD mice promoted disease in high-affinity TCR-TG NOD.Rag2(-/-) mice, but inhibited it in low-affinity TCR-TG NOD.Rag2(-/-) mice. Thus, in chronic autoimmune responses, CD4(+) Th cells contribute to both promoting and suppressing pathogenic autoimmunity.  相似文献   

8.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

9.
Cancer vaccines aim to induce CTL responses against tumors. Challenges for vaccine design are targeting Ag to dendritic cells (DCs) in vivo, facilitating cross-presentation, and conditioning the microenvironment for Th1 type immune responses. In this study, we report that ISCOM vaccines, which consist of ISCOMATRIX adjuvant and protein Ag, meet these challenges. Subcutaneous injection of an ISCOM vaccine in mice led to a substantial influx and activation of innate and adaptive immune effector cells in vaccine site-draining lymph nodes (VDLNs) as well as IFN-γ production by NK and NKT cells. Moreover, an ISCOM vaccine containing the model Ag OVA (OVA/ISCOM vaccine) was efficiently taken up by CD8α(+) DCs in VDLNs and induced their maturation and IL-12 production. Adoptive transfer of transgenic OT-I T cells revealed highly efficient cross-presentation of the OVA/ISCOM vaccine in vivo, whereas cross-presentation of soluble OVA was poor even at a 100-fold higher concentration. Cross-presenting activity was restricted to CD8α(+) DCs in VDLNs, whereas Langerin(+) DCs and CD8α(-) DCs were dispensable. Remarkably, compared with other adjuvant systems, the OVA/ISCOM vaccine induced a high frequency of OVA-specific CTLs capable of tumor cell killing in different tumor models. Thus, ISCOM vaccines combine potent immune activation with Ag delivery to CD8α(+) DCs in vivo for efficient induction of CTL responses.  相似文献   

10.
GRAIL (gene related to anergy in lymphocytes) is an ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase necessary for the induction of CD4(+) T cell anergy in vivo. We have extended our previous studies to characterize the expression pattern of GRAIL in other murine CD4(+) T cell types with a described anergic phenotype. These studies revealed that GRAIL expression is increased in naturally occurring (thymically derived) CD4(+) CD25(+) T regulatory cells (mRNA levels 10-fold higher than naive CD25(-) T cells). Further investigation demonstrated that CD25(+) Foxp3(+) antigen-specific T cells were induced after a "tolerizing-administration" of antigen and that GRAIL expression correlated with the CD25(+) Foxp3(+) antigen-specific subset. Lastly, using retroviral transduction, we demonstrated that forced expression of GRAIL in a T cell line was sufficient for conversion of these cells to a regulatory phenotype in the absence of detectable Foxp3. These data demonstrate that GRAIL is differentially expressed in naturally occurring and peripherally induced CD25(+) T regulatory cells and that the expression of GRAIL is linked to their functional regulatory activity.  相似文献   

11.

Background

Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model.

Methods/Principal Findings

We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells.

Conclusions

We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro.  相似文献   

12.
The contribution of B lymphocytes as APCs for CD4+ T cell priming remains controversial, based on findings that B cells cannot provide the requisite ligating and costimulatory signals for naive T cells to be activated. In the current study, we have examined Ag-specific T:B cell collaboration under circumstances in which B cells take up Ag through Ig receptors in vivo. This results in their activation and an ability to effectively stimulate naive CD4+ T cells both in vitro and in vivo. The aim of this work was to establish some of the key molecular interactions, as well as kinetics, between Ag-specific T and B cells that enable this priming to take place. Our approach was to amplify the starting pools of both Ag-specific T and B cell populations in vivo to track directly the events during initial T:B cell collaborations. We show that the induction of optimal levels of T cell priming to a protein Ag requires the involvement of Ag-specific B cells. The interaction that results between Ag-specific T and B cells prevents the down-modulation of B7 costimulatory molecules usually observed in the absence of appropriate T cells. Moreover, this prevention in down-modulation is independent of CD40:CD40 ligand contact. Finally, we present data suggesting that once Ag-specific T and B cells interact, there is a rapid (1-2-h) down-regulation of antigenic complexes on the surface of the B lymphocytes, possibly to prevent them from engaging other T cells in the vicinity and therefore focus the initial interaction.  相似文献   

13.
14.
15.
CD4+CD25+ T regulatory cells (Tregs) can actively suppress immune responses and thus have substantial therapeutical potential. Clinical application is, however, frustrated by their scarcity, anergic status, and lack of defined specificity. We found that a single injection of a small number of expanded but not fresh HY-specific Tregs protected syngeneic male skin grafts from rejection by immune-competent recipients. The expanded Tregs were predominantly located in the grafts and graft-draining lymph nodes. In vitro expanded Tregs displayed a phenotype of CD25highCD4lowFoxp3+CTLA4+, and also up-regulated IL10 and TGFbeta while down-regulating IFN-gamma, GM-CSF, IL5, and TNF-alpha production. Furthermore, expanded Tregs appeared to express a reduced level of Foxp3, which could be prevented by adding TGFbeta to the culture, and they also tended to lose Foxp3 following the repeated stimulation. Finally, a proportion of expanded HY-specific Tregs secreted IL2 in response to their cognate peptide, and this finding could be confirmed using Tregs from Foxp3GFP reporter mice. We not only demonstrated that expanded Tregs are superior to fresh Tregs in suppressing T cell responses against alloantigens, but also revealed some novel immunobiological properties of expended Tregs which are very instructive for modifying current Treg expansion procedures.  相似文献   

16.
Previous studies have shown that vaccine-primed CD4(+) T cells can mediate accelerated clearance of respiratory virus infection. However, the relative contributions of Ab and CD8(+) T cells, and the mechanism of viral clearance, are poorly understood. Here we show that control of a Sendai virus infection by primed CD4(+) T cells is mediated through the production of IFN-gamma and does not depend on Ab. This effect is critically dependent on CD8(+) cells for the expansion of CD4(+) T cells in the lymph nodes and the recruitment of memory CD4(+) T cells to the lungs. Passive transfer of a CD8(+) T cell supernatant into CD8(+) T cell-depleted, hemagglutinin-neuraminidase (HN)(421-436)-immune muMT mice substantially restored the virus-specific memory CD4(+) response and enhanced viral control in the lung. Together, the data demonstrate for the first time that in vivo primed CD4(+) T cells have the capacity to control a respiratory virus infection in the lung by an Ab-independent mechanism, provided that CD8(+) T cell "help" in the form of soluble factor(s) is available during the virus infection. These studies highlight the importance of synergistic interactions between CD4(+) and CD8(+) T cell subsets in the generation of optimal antiviral immunity.  相似文献   

17.
CD4+CD25+ T cells play a pivotal role in immunological homeostasis by their capacity to exert immunosuppressive activity. However, the mechanism by which these cells function is still a subject for debate. We previously reported that surface (membrane) TGF-beta produced by CD4+CD25+ T cells was an effector molecule mediating suppressor function. We now support this finding by imaging surface TGF-beta on Foxp3+CD4+CD25+ T cells in confocal fluorescence microscopy. Then, using a TGF-beta-sensitive mink lung epithelial cell (luciferase) reporter system, we show that surface TGF-beta can be activated to signal upon cell-cell contact. Moreover, if such TGF-beta signaling is blocked in an in vitro assay of CD4+CD25+ T cell suppression by a specific inhibitor of TGF-betaRI, suppressor function is also blocked. Finally, we address the role of CTLA-4 in CD4+CD25+ T cell suppression, showing first that whereas anti-CTLA-4 does not block in vitro suppressor function, it does complement the blocking activity of anti-TGF-beta. We then show with confocal fluorescence microscopy that incubation of CD4+CD25+ T cells with anti-CTLA-4- and rB7-1/Fc-coated beads results in accumulation of TGF-beta at the cell-bead contact site. This suggests that CTLA-4 signaling facilitates TGF-beta-mediated suppression by intensifying the TGF-beta signal at the point of suppressor cell-target cell interaction.  相似文献   

18.
Induction of tolerance in memory T cells has profound implications in the treatment of autoimmune diseases and transplant rejection. Previously, we reported that the presentation of low densities of agonist peptide/MHC class II complexes induced anergy in memory CD4(+) T cells. In the present study, we address the specific interaction of different types of APCs with memory CD4(+) T cells. A novel ex vivo anergy assay first suggested that B cells induce anergy in memory T cells, and an in vivo cell transfer assay further confirmed those observations. We demonstrated that B cells pulsed with defined doses of Ag anergize memory CD4 cells in vivo. We established that CD11c(+) dendritic cells do not contribute to anergy induction to CD4 memory T cells, because diphtheria toxin receptor-transgenic mice that were conditionally depleted of dendritic cells optimally induced anergy in memory CD4(+) T cells. Moreover, B cell-deficient muMT mice did not induce anergy in memory T cells. We showed that B2 follicular B cells are the specific subpopulation of B cells that render memory T cells anergic. Furthermore, we present data showing that anergy in this system is mediated by CTLA-4 up-regulation on T cells. This is the first study to demonstrate formally that B cells are the APCs that induce anergy in memory CD4(+) T cells.  相似文献   

19.
CD4+CD25+ T regulatory (Treg) cells inhibit immunopathology and autoimmune disease in vivo. CD4+CD25+ Treg cells' capacity to inhibit conventional T cells in vitro is dependent upon cell-cell contact; however, the cell surface molecules mediating this cell:cell contact have not yet been identified. LFA-1 (CD11a/CD18) is an adhesion molecule that plays an established role in T cell-mediated cell contact and in T cell activation. Although expressed at high levels on murine CD4+CD25+ Treg cells, the role of LFA-1 in these cells has not been defined previously. We hypothesized that LFA-1 may play a role in murine CD4+CD25+ Treg function. To evaluate this, we analyzed LFA-1-deficient (CD18-/-) CD4+CD25+ T cells. We show that CD18-/- mice demonstrate a propensity to autoimmunity. Absence of CD18 led to diminished CD4+CD25+ T cell numbers and affected both thymic and peripheral development of these cells. LFA-1-deficient CD4+CD25+ T cells were deficient in mediating suppression in vitro and in mediating protection from colitis induced by the transfer of CD4+CD25- T cells into lymphopenic hosts. Therefore, we define a crucial role for CD18 in optimal CD4+CD25+ Treg development and function.  相似文献   

20.
Data regarding the role of TGF-beta for the in vivo function of regulatory CD4(+)CD25(+) T cells (Treg) are controversial. A transgenic mouse model with impaired TGF-beta signaling specifically in T cells was used to assess the role of endogenous TGF-beta for the in vivo function of CD4(+)CD25(+) Treg in a murine model of colitis induced by dextran sulfate. Transfer of wild-type, but not transgenic CD4(+)CD25(+) Treg was found to suppress colitis in wild-type mice. In addition, by transferring CFSE-labeled CD4(+)CD25(+) Treg we could demonstrate that endogenous TGF-beta promotes the expansion of CD4(+)CD25(+) Treg in vivo. Transgenic mice themselves developed reduced numbers of peripheral CD4(+)CD25(+) Treg and were more susceptible to the induction of colitis, which could be prevented by the transfer of wild-type Treg. These data indicate that TGF-beta signaling in CD4(+)CD25(+) Treg is required for their in vivo expansion and suppressive capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号