首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infective spores of three species of microsporidia were subjected to the lyophilization process by employing varying media as cryoprotectants. The infectivity of the lyophilized spores was then tested against a standard fresh spore preparation in the appropriate host insect. Spores of Octosporea muscaedomesticae served as an experimental model and were rendered noninfective in host Phormia regina (Calliphoridae: Diptera) after lyophilization with the following cryoprotective agents: skim milk (12%), ascorbic acid (5%) combined with thiourea (5%), glycerol (10%), mesoinositol (5%), and equine serum. Spores of O. muscaedomesticae lyophilized or vacuum-dried in 50% sucrose as well as in the hosts' tissues remained highly infective for as long as 2 years at a dose of 106 spores/fly and a trial length of 12 days. At a dose of 5 × 104 spores/fly there was a slight decrease in infectivity of the spores which had been lyophilized in the host's abdomen after a 2-year storage period compared with that of fresh, nonlyophilized spores. Naked spores of Nosema algerae suspended in 50% sucrose and lyophilized produced infection in 50% of the host population of Anopheles stephensi (Culicidae: Diptera) compared with 70% infection produced by fresh non-lyophilized spores. Spores of Nosema whitei lyophilized within its host larva Tribolium castaneum (Tenebrionidae: Coleoptera) remained 100% infective at a dose of 5 × 105 spores/gram diet. It is concluded that an aqueous solution of 50% sucrose and/or the host's tissues are excellent protectants for the cryogenic or vacuum-drying process of the above-named spores, and their protective function may apply also to other microsporidian species.  相似文献   

2.
The biological cycle ofChilo partellus (Swinhoe) was described on artificial diet. From egg to adult, it lasted 32 to 49 days with an average of 36.6 days. About 2,000 larvae from the 2nd to the 5th instars were artificially infected by ingestion with doses ofNosema bordati Goudegnon, varying from 2×102 to 2×107 spores per ml. Only 72 survived (7.66 %) of these infected larvae.N. bordati, when present in the larvae, continued to multiply in the resulting pupae. The parasite affected the adults of this Pyralid reducing in a proportion of 5 the productivity of infected females and increasing the production of sterile eggs in the proportion of 8.  相似文献   

3.
《Plant science》1988,56(3):261-264
In greenhouse tests, Alternaria crassa (Sacc.) Rands killed > 80% of inoculated jimsonweed (Datura stramonium L.) seedlings within 14 days following a 9-h dew period at 25°C with 1 × 105 spores/ml, and after 8 h of dew at 1 × 106 spores/ml. At least 10 h of dew with 1 × 105 spores/ml and 9 h of dew with 1 × 106 spores/ml were required to obtain 100% mortality of fungus-inoculated plants. Growth stage and inoculum concentration studies revealed that higher concentrations of inoculum were required to obtain 100% mortality of larger plants. Weed control was significantly reduced by day/night air temperatures of 35°C and 24°C, respectively, at all inoculum concentrations as compared to the controls at lower air and dew temperature regimes. The results of these studies indicate that A. crassa has potential as a biological herbicide for the control of jimsonweed.  相似文献   

4.
The white halo fungus, Cephalosporium lecanii, was highly effective in the control of the coffee green bug, Coccus viridis, under field conditions. With two fortnightly applications of 16 × 106 spores/ml, it caused the maximum mortality (73.1%) of the bugs 2 weeks after second application. The mortality rate was increased in the same count to 97.6% when Tween 20 (0.05%) was added to the spore suspension. Addition of starch, Lerolat N 100, Erkentrol, and Wannin to the spore suspension also increased the pathogenicity of the fungus. Among the three insecticides tested along with the fungus, 0.225% Orthene and 0.1% DDT failed to increase the mortality rate of the green bugs while 0.1% BHC hampered the effectiveness of the fungus greatly. In another trial, the fungus was applied at five different dosages and 16 × 106 spores/ml was found adequate to cause a 77.9% mean mortality. The fungus was more effective as high-volume spray than as a low-volume spray. The pathogen, when tested in a drought period, was comparatively less effective, and addition of the humectant glycerol increased the mortality of the bugs due to fungus infection.  相似文献   

5.
Mass production and storage methods were evaluated for maximization of spores of Vairimorpha necatrix, a promising protozoan for microbial control due to its virulence and prolificity in lepidopterous pests. In vivo spore production was at a maximum when 3rd instar Heliothis zea were exposed to 6.6 spores/mm2 of artificial diet surface and reared for 15 days. Approximately 1.67 × 1010 spores/larva were produced, or ca. 1 × 1010 spores/larva after partial purification of the spores by homogenization of the larvae in water, filtration, and centrifugation. The spores were inactivated by relatively short exposures to several chemicals which were tested to counteract contamination of the diet surface by fungi in the spore inoculum. Spores of V. necatrix were stored at refrigerated and freezing temperatures for up to 2 years and bioassayed periodically with 2nd instar H. zea. Spores lost little infectivity after 23 months at 6°C if they were stored in a purified water suspension plus antibiotic, but they were noninfective after 18 months at 6°C if stored in host tissue. Storage at ?15°C caused little loss of infectivity whether the spores were stored in water and glycerine, in host tissue, or after lyophilization. The spores withstood lyophilization in host cadavers better than in purified water suspension. Samples of a dry V. necatrix-corn meal formulation, which was prepared for field efficacy tests and stored at ?15° and 6°C, were highly infective after 9 months. Large numbers of V. necatrix spores can thus be produced and later made available for microbial control field trials with little loss of infectivity.  相似文献   

6.
The mode of infection and cycle of development ofTolypocladium cylindrosporum Gams was examined inAedes sierrensis andCulex tarsalis. Larvae were found to be infected through the external cuticle, the pharynx and the midgut. Blastospores and conidia were both infective although for equal numerical concentrations blastospores proved more virulent causing high mortality within the first 48 h after inoculation (80 % for L2 larvae exposed to 5×105 spores/ml), while conidia generally took 7–10 days to produce the same results. Sporulation did not occur on submerged cadavers. Conidia were produced only on floating cadavers in contact with air. Conidial production on floating 4th instar larvae was found to average 1.8×107 conidia/larva. Invasion of the haemocoele and fairly extensive growth of the fungus almost invariably occurred before larvae were killed. This was particularly true forAedes sierrensis larvae. Details are presented of growth within the host and post-mortem penetration of the fungus out of the cadaver. AdultA. sierrensis sprayed with a conidial suspension proved susceptible to infection with 100 % mortality being recorded at 10 days. Infections originated in the thorax, suggesting, the integument or possibly the thoracic spiracles to be the most probable site of infection.  相似文献   

7.
Bacillus popilliae spores were stored for about 7 years under three separate conditions: frozen in sterile distilled water, smeared on glass microscope slides, and stored in loam soil at room temperature. In separate experiments, each of the 7-year-old preparations was fed to Popilla japonica larvae at concentrations of 103, 105, 107, and 109 spores/g of soil. A significant decrease in the percentage of larvae infected occurred in all of the aged spore tests. B. popilliae spores stored in soil, for the extended period, produced 3% larval infection only at the 109 spores concentration; similar results were obtained from frozen spores. When P. japonica larvae were fed spores stored dried on slides, about 20% of the larvae developed milky disease. When aged frozen spores were artificially injected into larvae, 12% became infected at concentrations of 1 × 106 spores/larvae; dried spores at the same concentration infected about 38% of the insect larvae. We conclude from these data that aged B. popilliae spores are significantly less infective against P. japonica larvae than young spores.  相似文献   

8.
The effect of ultraviolet light on the microsporidian Octosporea muscaedomesticae in relation to infection in the adult black blowfly, Phormia regina, was investigated. A 30-Watt germicidal lamp, 253.7-nm wavelength, was used as source of uv light in five investigations. In addition, sunlight served as a uv source in two studies. Viable naked dried spores exposed to the uv lamp at a distance of 10 cm were killed after 15 min. Viable naked spores in an aqueous suspension were killed after 30 min of exposure to the uv lamp and after 3 hr of exposure to bright sunlight, respectively. Daily 30-min uv lamp exposures on living hosts harboring all life phases of the parasite did not interfere with the ensuing infection in the blowfly's midgut and the pathogen's developmental cycle. Spores harvested from uv-treated infected hosts were found to be as infective as spores retrieved from hosts not treated with uv. Spores contained in dried fecal droplets and exposed up to 3 hr to the uv lamp, or 12 hr to bright sunlight, respectively, remained infective. Addition of uric acid to a preparation of naked spores prior to 15- and 30-min uv irradiations yielded 100% infection in both host groups. A uv-protective function is ascribed to components provided by the host's tissues and feces.  相似文献   

9.
A novel milky disease organism has been found causing disease in Aphodius tasmaniae and other scarabaeid larvae in the field in Australia. The sporangium is exceptionally long, measuring 10.5 × 1.5 μm, with a small central spore, measuring 1.0 × 0.6 μm. The vegetative cell is about half the size of the sporangium. The disease was easily transmitted by injection of spores into the hemocoel, with typically milky symptoms developing in 2–4 weeks. Spores will form in vivo at temperatures down to 12°C. For A. tasmaniae third-instar larvae, the ID50 by injection was 3 × 102 spores/larva, yet no infection resulted when larvae were reared in peat containing up to 108 spores/g, i.e., the disease was not successfully transmitted per os. All 10 species of scarabaeids tested were susceptible to the disease when spores were injected; however, all attempts to infect larvae per os were unsuccessful. In vitro culture was also unsuccessful.  相似文献   

10.
This study examined the physiological effects of joint and separate parasitism and infection by the endoparasitoid Microplitis pallidipes Szépligeti and the nucleopolyhedrovirus (NPV), respectively, on haemolymph 20‐hydroxyecdysone (20‐E) titre in Spodoptera exigua (Hübner) larvae. The results indicated that in parasitized larvae, virus‐infected larvae (5.7 × 103 and 5.7 × 105 OB/ml) and parasitized larvae infected with virus at 5.7 × 105 OB/ml, compared to healthy larvae, the 20‐E all declined during the first 3 days but began to increase from day 4 after treatment, while in jointly parasitized and infected larvae (5.7 × 103 OB/ml), the 20‐E declined during the first 4 days but began to increase on day 5 after treatment. Meanwhile, compared to parasitized larvae, the 20‐E declined during the first 4 days but significantly increased on day 5 in jointly parasitized and infected larvae (5.7 × 103 OB/ml), while significantly increased during the first 2 days but began to decrease from day 3 after treatment in jointly parasitized and infected larvae (5.7 × 105 OB/ml). Finally, in larvae that were both parasitized and virus infected (5.7 × 103 OB/ml), compared to just virus‐infected larvae (5.7 × 103 OB/ml), the 20‐E was lower on days 3 and 4 but higher on other days after treatment; in larvae that were both parasitized and virus infected (5.7 × 105 OB/ml), compared to just virus‐infected larvae (5.7 × 105 OB/ml), the 20‐E was significantly higher at the first 2 days but lower from day 3 after treatment. Our results revealed that 2nd instar larval M. pallidipes in host bodies may release 20‐E into the haemolymph of S. exigua larvae and that NPV infection may stimulate S. exigua to release more 20‐E during its third to fourth instar larval moulting. We found that this stimulatory effect was greater with higher virus concentrations.  相似文献   

11.
The parasitoid Encarsia formosa is commonly applied to control the greenhouse whitefly Trialeurodes vaporariorum in glasshouse tomatoes and cucumbers. Nevertheless, in some cases the control capacity of this natural enemy is insufficient and an additional selective pest-suppressing agent is desirable. The entomopathogenic fungus Aschersonia aleyrodis was applied to cucumber plants carrying whiteflies in different developmental stages. After spraying each leaf with 2 ml of spore suspension (4 × 106 spores/ml) the plants were kept at 100% RH for 24 hr; thereafter the humidity was lowered to 70% RH at 20°C and the photoperiod was 16 hr. Treated eggs did not become infected, but larvae that hatched from these eggs and settled on the treated abaxial leaf surface were infected at the same rate and to the same degree as treated first instar larvae. This suggests that the spores persist for at least 7 days. The final percentages of infection over all instars when treated as young eggs, old eggs, and first larval instars were 94, 93, and 90%, respectively. The final percentages of infection when treated as third and fourth larval instars and prepupae were 76, 28, and 12%, respectively. The older instars were less susceptible and adults were seldom infected by the fungus. Several applications of A. aleyrodis as a microbial insecticide are needed to achieve sufficient control of whitefly populations in glasshouses.  相似文献   

12.
From 1972 to 1974, estimates of the natural larval mortality (> second instar) of elm bark beetles caused by pathogenic organisms were always below 7'5 % of the beetle population. The pathogenic fungus Verticillium lecanii was frequently isolated from field-collected dead larvae, and in the laboratory all larvae were killed in 5 days when exposed to spore concentrations of 4·5 × 106 spores/ml. V. lecanii begins to lose its pathogenicity after prolonged culture on artificial media. The time taken for V. lecanii to kill Scolytus scolytus larvae when exposed to a logarithmic series of spore dilutions from 9·1 × 107/ml to 9·1 × 103/ml increased with decreasing amounts of inoculum. Even at spore concentrations as low as 9·1 × 103/ml the mortality of treated larvae was greater than that of untreated individuals. At 100% r.h. all treated larvae were killed over a temperature range of 5–30 °C; those maintained at 25 °C were killed most rapidly and those kept at 5 °C the slowest.  相似文献   

13.
The effect of various factors on the yield of Bacillus popilliae var. rhopaea spores formed in Rhopaea verreauxi larvae have been studied. Lack of adequate food, temperatures above and below 23°C, and infecting doses above 106 spore larva, all significantly lowered spore yield per larva. Larval age had a pronounced effect; second-instar and young third-instar larvae produ ed about 1 × 1010 spores while old third-instar larvae produced about 4 × 1010 spores. Incubation of larvae for longer than 4 weeks did not increase spore yield per larva. Yields were similar whether larvae were infected by injection or per os. Three other host species could be used to mass-produce B. popilliae var. rhopaea spores but all were less efficient than R. verreauxi. Milky third-instar R. verreauxi larvae, which were field collected, yielded 1.57 × 1010 spores per larva.  相似文献   

14.
In 1974, an application of the microsporidan,Nosema pyrausta (Paillot, 1927)Kotlan, 1928, with a back-pack type sprayer (22.5×107 spores/plant) to whorl stage maize infested with European corn borers,Ostrinia nubilalis (Hübner) reduced the number of larvae/plant by 48.1% and produced an infection of 15.3×104 spores/mg of larval weight in 62.1% of the collected larvae. In 1975, applications of 24.3×107 spores/plant to similar maize, in 2 separate tests, reduced the number of larvae/plant by 18.8 and 43.8% and caused an infection of 14.3 and 19.1×104 spores/mg of larval weight in 65.9 and 63.3% of the collected larvae. Also, in 1975, applications of 24.3×107 spores/plant to pollen shedding maize in 2 separate tests reduced the number of larvae/plant by 17.2 and 14.1% and caused an infection of 24.3 and 27.2×104 spores/mg of larval weight in 99.2 and 95.2% of the collected larvae.  相似文献   

15.
Three Metarhizium anisopliae and three Beauveria bassiana isolates were cultivated in media containing casamino acids, soybean flour or sunflower seed flour and were shaken for three days. M. anisopliae presented similar yields of around 106 submerged spores/ml without significant differences among them, whereas B. bassiana produced yields of around 108 spores/ml, of which GHA strain produced more submerged spores in the casamino acids medium. The other two strains showed no significant difference in the production of submerged spores in the three media used. Differences in mortality on Aedes aegypti larvae were observed with the submerged spores of Metarhizium depending on isolate and medium used. M. anisopliae 2157 caused significantly higher mortality (40%) when cultivated in casamino acids medium. It presented an LC50 of 8.93 × 105 submerged spores/ml water against mosquito larvae five days after application, whereas it caused 27% mortality in Ae. aegypti adults 10 days after application. In conclusion, fungal nutrition affected virulence of some isolates of M. anisopliae against Ae. aegypti larvae while such an effect was not noted for B. bassiana isolates.  相似文献   

16.
Equivalent numbers of spores were produced when the microsporidan Nosema necatrix was propagated in either Trichoplusia ni or Heliothis zea. Maximum spore production was obtained at an inoculum level of 1 × 105 spores/ml. Larvae inoculated 5 days post-hatching contained 1.6 × 109 spores/gram larva after an incubation period of 21 days. Temperature optima for the parasite are 21–26°C in both hosts.  相似文献   

17.
Nosema eurytremae, a microsporidian parasite of Malaysian trematodes, was injected at the rate of 1 × 104 spores/larva into Pieris brassicae. The larvae, which subsequently pupated, were incubated at 25 to 26°C and on harvesting 19 days later yielded an average of 6 × 108 spores/pupa. This was equivalent to 60,000 times the initial dose. Purity of filtered, washed spore suspensions ranged from 80 to 99% with up to 20% host debris.  相似文献   

18.
Considering the rapid transmission of the dengue virus, substantial efforts need to be conducted to ward-off the epidemics of dengue viruses. The control effort is depending on chemical insecticides and had aroused undesirable conflicts of insecticide resistance. Here, we study the entomopathogenic fungus, Metarhizium anisopliae as a promising new biological control agent for vector control. The pathogenicity effects of Metarhizium anisopliae against field and laboratory strains of Aedes albopictus and Aedes aegypti larvae were tested using the larvicidal bioassay technique. The results demonstrate that the treatments using M. anisopliae isolate MET-GRA4 were highly effective and able to kill 100% of both Ae. albopictus and Ae. aegypti mosquito larvae at a conidia concentration of 1 × 10?/ml within 7 days of the treatment period. The fungus displayed high larvicidal activity against laboratory and field strain of Ae. aegypti larvae with LC50 values (9.6 × 103/ml, 1.3 × 103/ml) and LC95 values (1.2 × 10?/ml, 5.5 × 105/ml) respectively. For Ae. albopictus, LC50 values for laboratory and field strains were (1.7 × 104/ml, 2.7 × 104/ml) and the LC95 values were (2.1 × 10?/ml, 7.0 × 105/ml) respectively. Interestingly, the susceptibility of field strain towards M. anisopliae was higher as compared to the laboratory strain Aedes larvae. In which, the causative agents of all the dead larvae were verified by the virulence of M. anisopliae and caused morphological deformities on larval body. The findings from this study identify this isolate could be an effective potential biocontrol agent for vector mosquitoes in Malaysia.  相似文献   

19.
Two methods of infection, i.e., feeding known numbers of spores and rearing larvae in contaminated peat, were used to bioassay the susceptibility of Rhopaea verreauxi to Bacillus popilliae var. rhopaea at 23°C. The susceptibility of the three larval instars was similar as measured by the ID50 and IC50 values. However, within an instar, newly molted larvae were less susceptible than mature larvae when infected by the contaminated peat method. It is suggested that this was due to reduced food intake. The range of ID50 values for all bioassays with R. verreauxi larvae were 1.1 × 107 to 4.0 × 107 spores per larva, and IC50 values were 3.4 × 106 to 5.0 × 107 spores per g of contaminated peat. The slope of the probit line was always low (0.6 to 1.8) except for young first-instar larvae infected by contaminated peat when the slope was 4.0. Disease per se did not affect food intake, though intake was reduced at high doses of contaminated peat. Young larvae often died without developing symptoms but, with increasing age, infected larvae were more likely to develop symptoms. Bioassays with Othnonius batesi and Rhopaea morbillosa indicated a much lower susceptibility per os than for R. verreauxi. It is concluded that the potential for using B. popilliae var. rhopaea to control R. verreauxi is high, but the bacillus is unlikely to be of value in control of O. batesi or R. morbillosa.  相似文献   

20.
When larvae of the Indian meal moth, Plodia interpunctella, were fed diets containing spores of Nosema plodiae, the number that survived to the adult stage decreased and the rate of adult emergence was retarded as the concentration of spores was increased; all surviving adults were infected. Also, when larvae were reared on diets containing spores of Nosema heterosporum, the number that survived to the adult stage decreased as the concentration of spores was increased; however, no relationship was apparent between concentration of spores and the rate of adult emergence. The LC50's of N. plodiae and N. heterosporum were 8.09 × 106 and 4.52 × 103 spores/g diet, respectively, which confirmed preliminary observations regarding the relative virulence of the two species of Nosema to Indian meal moth larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号