首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two new α‐pyrones (=2H‐pyran‐2‐ones), ficipyrones A and B ( 1 and 2 , resp.), and two new α‐furanones (=2H‐furan‐2‐ones), ficifuranones A and B ( 3 and 4 , resp.), together with three known metabolites, antibiotic F 0368 ( 5 ), hydroxyseiridin ( 6 ), and hydroxyisoseiridin ( 7 ), were isolated from solid cultures of the plant endophytic fungus Pestalotiopsis fici. Their structures were elucidated primarily by NMR spectroscopy, and the absolute configuration of 1 was deduced from the circular‐dichroism (CD) data. Compound 1 showed antifungal activity against the plant pathogen Gibberella zeae (CGMCC 3.2873) with an IC50 value of 15.9 μM .  相似文献   

3.
4.
A variety of applications of 8‐alkynylated nucleosides has prompted the synthesis of new purine analogues. Bromination of unprotected 2‐amino‐2′‐deoxyadenosine with Br2/AcOH/AcONa gives 2‐amino‐8‐bromo‐2′‐deoxyadenosine (87%). The brominated derivative is converted to 8‐alkynylated 2‐amino‐2′‐deoxyadenosines by palladium‐catalyzed Sonogashira cross‐coupling reaction via microwave assistance (81 – 95%). The resulting compounds are further transformed to 8‐alkynylated 2′‐deoxyisoguanosines (52 – 70%). The physical properties of new compounds are investigated.  相似文献   

5.
3Z‐3‐[(1H‐pyrrol‐2‐yl)‐methylidene]‐1‐(1‐piperidinylmethyl)‐1,3‐2H‐indol‐2‐one (Z24), a synthetic anti‐angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2‐DE and MALDI‐TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP‐nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid β‐oxidation, and oxidative phosphorylation is a potential mechanism of Z24‐induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis‐mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24‐induced hepatotoxicity.  相似文献   

6.
7.
A reaction of DBU promoted ring opening in nucleoside‐3'‐O‐ and nucleoside‐5'‐O‐(2‐thio‐4,4‐pentamethylene‐1,3,2‐oxathiaphospholane) monomers with a pyrophosphate or a methylenediphosphonate anion proceeds with substantial loss of stereoselectivity. Depending on the absolute configuration of the phosphorus atom, so far widely accepted the stereoretentive mechanism of condensation is accompanied by a stereoinvertive one, most likely employing an intramolecular ligand–ligand exchange in an uncharged intermediate. Chirality 27:155–122, 2015. © 2014 Wiley Periodicals, Inc  相似文献   

8.
Epilepsy, one of the most frequent neurological disorders, is still insufficiently treated in about 30% of patients. As a consequence, identification of novel anticonvulsant agents is an important issue in medicinal chemistry. In the present article we report synthesis, physicochemical, and pharmacological evaluation of N‐trans‐cinnamoyl derivatives of R and S‐2‐aminopropan‐1‐ol, as well as R and S‐2‐aminobutan‐1‐ol. The structures were confirmed by spectroscopy and for derivatives of 2‐aminopropan‐1‐ols the configuration was evaluated by means of crystallography. The investigated compounds were tested in rodent models of seizures: maximal electroshock (MES) and subcutaneous pentetrazol test (scPTZ), and also in a rodent model of epileptogenesis: pilocarpine‐induced status prevention. Additionally, derivatives of 2‐aminopropan‐1‐ols were tested in benzodiazepine‐resistant electrographic status epilepticus rat model as well as in vitro for inhibition of isoenzymes of cytochrome P450. All of the tested compounds showed promising anticonvulsant activity in MES. For R(–)‐(2E)‐N‐(1‐hydroxypropan‐2‐yl)‐3‐phenylprop‐2‐enamide pharmacological parameters were found as follows: ED50 = 76.7 (68.2–81.3) mg/kg (MES, mice i.p., time = 0.5 h), ED50 = 127.2 (102.1–157.9) mg/kg (scPTZ, mice i.p., time = 0.25 h), TD50 = 208.3 (151.4–230.6) mg/kg (rotarod, mice i.p., time = 0.25 h). Evaluation in pilocarpine status prevention proved that all of the reported compounds reduced spontaneous seizure activity and act as antiepileptogenic agents. Both enantiomers of 2‐aminopropan‐1‐ols did not influence cytochrome P450 isoenzymes activity in vitro and are likely not to interact with CYP substrates in vivo. Chirality 28:482–488, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
The acetylcholinesterase inhibition by enantiomers of exo‐ and endo‐2‐norbornyl‐Nn‐butylcarbamates shows high stereoselelectivity. For the acetylcholinesterase inhibitions by (R)‐(+)‐ and (S)‐(?)‐exo‐2‐norbornyl‐Nn‐butylcarbamates, the R‐enantiomer is more potent than the S‐enantiomer. But, for the acetylcholinesterase inhibitions by (R)‐(+)‐ and (S)‐(?)‐endo‐2‐norbornyl‐Nn‐butylcarbamates, the S‐enantiomer is more potent than the R‐enantiomer. Optically pure (R)‐(+)‐exo‐, (S)‐(?)‐exo‐, (R)‐(+)‐endo‐, and (S)‐(?)‐endo‐2‐norbornyl‐Nn‐butylcarbamates are synthesized from condensations of optically pure (R)‐(+)‐exo‐, (S)‐(?)‐exo‐, (R)‐(+)‐endo‐, and (S)‐(?)‐endo‐2‐norborneols with n‐butyl isocyanate, respectively. Optically pure norborneols are obtained from kinetic resolutions of their racemic esters by lipase catalysis in organic solvent. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
β‐arrestin 1 and 2 (also known as arrestin 2 and 3) are homologous adaptor proteins that regulate seven‐transmembrane receptor trafficking and signalling. Other proteins with predicted ‘arrestin‐like’ structural domains but lacking sequence homology have been indicated to function like β‐arrestin in receptor regulation. We demonstrate that β‐arrestin2 is the primary adaptor that rapidly binds agonist‐activated β2 adrenergic receptors (β2ARs) and promotes clathrin‐dependent internalization, E3 ligase Nedd4 recruitment and ubiquitin‐dependent lysosomal degradation of the receptor. The arrestin‐domain‐containing (ARRDC) proteins 2, 3 and 4 are secondary adaptors recruited to internalized β2AR–Nedd4 complexes on endosomes and do not affect the adaptor roles of β‐arrestin2. Rather, the role of ARRDC proteins is to traffic Nedd4–β2AR complexes to a subpopulation of early endosomes.  相似文献   

11.
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress.  相似文献   

12.
Prostaglandin E2 (PGE2) is an endogenous lipid molecule involved in normal brain development. Cyclooxygenase‐2 (COX2) is the main regulator of PGE2 synthesis. Emerging clinical and molecular research provides compelling evidence that abnormal COX2/PGE2 signaling is associated with autism spectrum disorder (ASD). We previously found that COX2 knockout mice had dysregulated expression of many ASD genes belonging to important biological pathways for neurodevelopment. The present study is the first to show the connection between irregular COX2/PGE2 signaling and autism‐related behaviors in male and female COX2‐deficient knockin, (COX)‐2?, mice at young (4‐6 weeks) or adult (8‐11 weeks) ages. Autism‐related behaviors were prominent in male (COX)‐2? mice for most behavioral tests. In the open field test, (COX)‐2? mice traveled more than controls and adult male (COX)‐2? mice spent less time in the center indicating elevated hyperactive and anxiety‐linked behaviors. (COX)‐2? mice also buried more marbles, with males burying more than females, suggesting increased anxiety and repetitive behaviors. Young male (COX)‐2? mice fell more frequently in the inverted screen test revealing motor deficits. The three‐chamber sociability test found that adult female (COX)‐2? mice spent less time in the novel mouse chamber indicative of social abnormalities. In addition, male (COX)‐2? mice showed altered expression of several autism‐linked genes: Wnt2, Glo1, Grm5 and Mmp9. Overall, our findings offer new insight into the involvement of disrupted COX2/PGE2 signaling in ASD pathology with age‐related differences and greater impact on males. We propose that (COX)‐2? mice might serve as a novel model system to study specific types of autism.  相似文献   

13.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

14.
15.
In the present study, we reported the efficient synthesis of 11 3‐(pyrimidin‐2‐yl)‐thiazolidinones in good yields using molecular sieve as the desiccant agent. In addition, we have evaluated the antioxidant capacity of the synthesized compounds by the 2,2‐diphenyl‐2‐picrylhydrazyl hydrate (DPPH?) and the 2,2‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS+?) radicals scavenging assay. Six compounds showed antioxidant activity towards DPPH? (EC50 between 16.13 and 49.94 µg/mL) and also demonstrated excellent activity regarding ABTS+? (TEAC: 10.32–53.52). These results showed that compounds 3‐(pyrimidin‐2‐yl)‐thiazolidinones may be easily synthesized by a less expensive procedure and could be a good starting point to the development of new antioxidant compounds. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:445‐450, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21506  相似文献   

16.
The epidermal growth factor receptor ( EGFR ) is an important regulator of normal growth and differentiation, and it is involved in the pathogenesis of many cancers. Endocytic downregulation is central in terminating EGFR signaling after ligand stimulation. It has been shown that p38 MAPK activation also can induce EGFR endocytosis. This endocytosis lacks many of the characteristics of ligand‐induced EGFR endocytosis. We compared the two types of endocytosis with regard to the requirements for proteins in the internalization machinery. Both types of endocytosis require clathrin, but while epidermal growth factor (EGF) ‐induced EGFR internalization also required Grb 2 , p38 MAPK ‐induced internalization did not. Interestingly , AP ‐2 knock down blocked p38 MAPK ‐induced EGFR internalization, but only mildly affected EGF ‐induced internalization. In line with this, simultaneously mutating two AP ‐2 interaction sites in EGFR affected p38 MAPK ‐induced internalization much more than EGF ‐induced EGFR internalization. Thus, it seems that EGFR in the two situations uses different sets of internalization mechanisms.  相似文献   

17.
18.
A variety of 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethines and 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one benzamide were prepared, characterized and evaluated for the anticonvulsant activity in the rat using picrotoxin‐induced seizure model. The prepared 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethine derivatives emerged potentially anticonvulsant molecular scaffolds exemplified by compounds, 7‐{(E)‐[(4‐nitrophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐{(E)‐[(4‐bromo‐2,6‐difluorophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one and 7‐[(E)‐{[3‐(4‐fluorophenyl)‐1‐phenyl‐1H‐pyrazol‐4‐yl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one. All these four compounds have shown substantial decrease in the wet dog shake numbers and grade of convulsions with respect to the standard drug diazepam. The most active compound, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, exhibited 74 % protection against convulsion which was higher than the standard drug diazepam. Furthermore, to identify the binding mode of the interaction amongst the target analogs and binding site of the benzodiazepine receptor, molecular docking study and molecular dynamic simulation were carried out. Additionally, in silico pharmacokinetic and toxicity predictions of target compounds were carried out using AdmetSAR tool. Results of ADMET studies suggest that the pharmacokinetic parameters of all the target compounds were within the acceptable range to become a potential drug candidate as antiepileptic agents.  相似文献   

19.
20.
Refolding of proteins at high concentrations often results in non‐productive aggregation. This study, through a unique combination of spectroscopic and chromatographic analyzes, provides biomolecular evidence to demonstrate the ability of Eudragit S‐100, a pH‐responsive polymer, to enhance refolding of denatured‐reduced lysozyme at high concentrations. The addition of Eudragit in the refolding buffer significantly increases lysozyme refolding yield to 75%, when dilution refolding was conducted at 1 mg/mL lysozyme. This study shows evidence of an electrostatic interaction between oppositely charged lysozyme and the Eudragit polymer during refolding. This ionic complexing of Eudragit and lysozyme appears to shield exposed hydrophobic residues of the lysozyme refolding intermediates, thus minimizing hydrophobic‐driven aggregation of the molecules. Importantly, results from this study show that the Eudragit‐lysozyme bioconjugation does not compromise refolded protein structure, and that the polymer can be readily dissociated from the protein by ion exchange chromatography. The strategy was also applied to refolding of TGF‐β1 and KGF‐2. © 2009 American Institute of Chemical Engineers Biotechnol. Prog. 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号