首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method to obtain several highly enriched populations of testis cell types from rats of a single age is described. Single cell suspensions from immature rat testes were prepared after enzymatic removal of interstitial cells. Cells were separated on the basis of size into four fractions (bulk preparations) or eight fractions (analytical preparations) by centrifugal elutriation. These elutriator fractions were further separated by equilibrium density centrifugation in Percoll gradients. In this manner, populations of 2 X 10(7) type A spermatogonia (51% purity), 3 X 10(7) type B spermatogonia (76% purity), 5 X 10(7) zygotene/early pachytene spermatocytes (56% purity), 3 X 10(7) midpachytene spermatocytes (70% purity), and 4 X 10(7) Sertoli cells (89% purity) could be obtained from 50 immature rats within 6 h after killing. Purities, determined by examination of cytologic smears, were verified by Coulter volume and flow cytometric DNA determinations. These separation methods were used to obtain cell populations for characterization of levels and synthesis of high mobility group proteins in the early stages of spermatogenesis.  相似文献   

2.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

3.
Culture conditions that support the in vitro development of many spermatogenic stages from the frog Xenopus laevis are described. Spermatogenic cells were dissociated with collagenase and preelongation stages aseptically isolated by density gradient centrifugation in Metrizamide. The cells were then cultured in modified forms of defined nutrient oocyte medium (DNOM). The development of spermatogenic cells was affected significantly by changes in fetal calf serum concentration, cell density, energy sources, and NaCl concentration. Optimum in vitro spermatid development was obtained when spermatogenic cells were cultured at relatively high densities (3–7 × l07 cells/25 cm2) in DNOM modified to contain 10% heat-inactivated, dialyzed fetal calf serum, 2 mM 1-glutamine, 0.1 % glucose, 15 mM HEPES buffer (pH 7.4), and 38.3–48.3 mM NaCl. These culture conditions also supported the differentiation of preelongation spermatids and spermatocytes isolated by density-gradient centrifugation in Metrizamide and subsequent unit gravity sedimentation in gradients of bovine serum albumin. Approximately 95 % of such isolated spermatids and spermatocytes continued differentiating in vitro for 14 days at in vivo rates. Phase-contrast and electron microscopy of the cultured cells demonstrated that in vitro differentiation was morphologically normal between the leptotene and elongate spermatid stages. Autoradiographic studies of preleptotene development demonstrated that spermatogonia proliferated and preleptotene spermatocytes developed to zygotene in 12-day cultures. The results suggest that many spermatogenic stages in Xenopus can develop independent of Sertoli cells, and demonstrate that spermatogenic cell cultures can now be used for in vitro studies of spermatogenesis.  相似文献   

4.
Adult male Wistar rats were treated with Danazol (4 mg/day s.c.) for 52 days. The drug produced a marked, rapid drop in serum testosterone concentrations to very low levels and caused a slower decrease in serum FSH, LH and testis weight. Flow cytometric analysis of testicular cell suspensions showed a decline in the absolute numbers of haploid cells (spermatids), tetraploid cells (mainly pachytene spermatocytes) and of cells in the S-phase of the division cycle, suggesting that Danazol inhibited proliferation of spermatogonia and/or primary spermatocytes. Histological counting of the different types of spermatogonia, however, revealed no significant change in their numbers during Danazol treatment. It is concluded that Danazol inhibited spermatogenesis primarily after the preleptotene stage of primary spermatocytes.  相似文献   

5.
6.
A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).  相似文献   

7.
8.
Identification of cells has been made in stained smears of cell suspensions prepared from mouse testes and separated by velocity sedimentation at unit gravity. Comparison of various methods of producing suspensions demonstrated that the best cell separations were achieved using suspensions prepared with trypsin. Various fractions obtained following separation contained 29% Sertoli cells sedimenting at about 14 mm/h, 17% Leydig cells at 11 mm/h, 73% pachytene spermatocytes at 9.5 mm/h, 54% binucleate spermatids and 14% secondary spermatocytes at 6.7 mm/h, 77% round spermatids at 4.5 mm/h, 21% elongating spermatids and 74% cytoplasmic fragments detached from these spermatids at 2.1 mm/h and 37% late spermatids at 0.75 mm/h. The resolution of different size classes of cells was essentially complete, but separation of different types of cells was limited by the occurrence of multinucleate forms of the cells and by fragments of damaged elongated spermatids. Most cells, however, appeared to be intact on light microscopical examination.  相似文献   

9.
Mammalian spermatogenesis is a complex differentiation process that occurs in several stages in the seminiferous tubules of the testes. Currently, there is no reliable cell culture system allowing for spermatogenic differentiation in vitro, and most biological studies of spermatogenic cells require tissue harvest from animal models like the mouse and rat. Because the testis contains numerous cell types - both non-spermatogenic (Leydig, Sertoli, myeloid, and epithelial cells) and spermatogenic (spermatogonia, spermatocytes, round spermatids, condensing spermatids and spermatozoa) - studies of the biological mechanisms involved in spermatogenesis require the isolation and enrichment of these different cell types. The STA-PUT method allows for the separation of a heterogeneous population of cells - in this case, from the testes - through a linear BSA gradient. Individual cell types sediment with different sedimentation velocity according to cell size, and fractions enriched for different cell types can be collected and utilized in further analyses. While the STA-PUT method does not result in highly pure fractions of cell types, e.g. as can be obtained with certain cell sorting methods, it does provide a much higher yield of total cells in each fraction (~1 x 108 cells/spermatogenic cell type from a starting population of 7-8 x 108 cells). This high yield method requires only specialized glassware and can be performed in any cold room or large refrigerator, making it an ideal method for labs that have limited access to specialized equipment like a fluorescence activated cell sorter (FACS) or elutriator.  相似文献   

10.
Gene expression during murine spermatogenesis has been studied using highly enriched populations of cells obtained by velocity sedimentation at unit gravity and further purified by density gradient centrifugation through Percoll. Polypeptides whose synthesis was directed by total cytoplasmic RNA from round spermatids, pachytene spermatocytes, primitive type A spermatogonia, and Sertoli cells in cell-free translation systems have been compared by two-dimensional polyacrylamide gel electrophoresis, followed by fluorography. At the level of detection provided by the electrophoretic methods used, each population of cells contained mRNAs encoding over 200 polypeptides, many of which were present in high abundance in all four cell types. However, for each cell type examined, a minimum of 5-10% of these polypeptides appear to be either specific to or greatly enriched within a particular cell type. Analysis of the polysomal and nonpolysomal cell fractions from pachytene spermatocytes and round spermatids revealed that the two compartments share many identical mRNAs but specific mRNAs are selectively compartmentalized between the cell fractions and between the two cell types. Movement between compartments was seen; e.g., some polypeptides encoded by mRNA found primarily in the nonpolysomal fraction of pachytene cells were later seen in the polysomal fraction from round spermatids. Virtually every other combination was also observed. These results suggest that the control of gene expression at the level of selective production of mRNA and selective utilization of mRNA are among the mechanisms involved in regulation of spermatogenic cell differentiation.  相似文献   

11.
Mice were exposed to two X-ray doses of 300 and 100 R with 4 days interval in order to deplete the testes of spermatogonia and early meiotic cells. After X-ray treatment, the seminiferous tubules were labelled in culture with radioactive RNA precursors, dispersed into single cells by trypsin treatment and these were fractionated into several cell classes by velocity sedimentation at unit gravity in a Ficoll gradient. With this method quasi-homogeneous populations of middle-late pachytene spermatocytes and round spermatids (steps 1–8 of spermiogenesis) were obtained. RNA was extracted from these two cell types and analysed by linear sucrose gradient fractionation and by affinity chromatography on a poly(U)-Sepharose column. The results showed that round spermatids, as well as pachytene spermatocytes, synthesize both ribosomal RNA (rRNA) and poly(A)+ RNA (presumptive messenger RNA) (mRNA). The post-meiotic synthesis of RNA ceases completely in mid-spermiogenesis after nuclear elongation in spermatids has set in.  相似文献   

12.
In the mouse testis, spontaneous death of spermatogonia has a large impact on the output of differentiating spermatids. The tyrosine kinase receptor c-kit is expressed in type A, intermediate, and B spermatogonia, and kit-ligand (KL) is expressed in Sertoli cells. Previous work indicated a depletion of type A spermatogonia after in vivo exposure to an antibody that blocks c-kit function. The present work was undertaken to determine whether blocking c-kit function results in apoptosis of spermatogonia or in an inability of spermatogonia to proliferate. Testes sections were stained by a method that detects apoptotic cells in situ. In testes of 8-day postnatal (P8) males, type A spermatogonia are the predominant germ cell type present. Stained sections from P8 males injected with the c-kit antagonistic antibody ACK2 showed a fivefold higher rate of cell death than uninjected controls. At least a twofold increase was observed in P12 and P30 injected males and in P30 SId + males as compared to uninjected controls. Determination of the stage of germ cell development that was affected in P30 males indicated that the frequency of gonial cell death was increased fourfold, but the frequency of death in spermatocytes around the time of the meiotic division was increased 15-fold. It is concluded that KL acts to prevent apoptosis in the testis in vivo, that the membrane bound form of KL may be more effective, and that survival of late meiotic and dividing spermatocytes is regulated by KL through an indirect mechanism probably mediated by Sertoli cells. Thus, KL is an important regulator of spermatid output. © 1995 wiley-Liss, Inc.  相似文献   

13.
Summary Sulfhydryl oxidase (SOx) is an enzyme that catalyzes the oxidation of sulfhydryl compounds. It is present in mitochondria of certain testicular cells at specific stages of functional activation. In the mature human testis moderate SOx immunoreactivity is found in Leydig cells, and lacking in Sertoli and in peritubular cells. The Adark spermatogonia usually contain immuno-reactive mitochondria, while in Apale spermatogonia immunoreactivity is mostly low. In stage V of spermatogenesis, Apale spermatogonia were found containing immunoreactive material. Leptotene (stages IV and V) and zygotene (stage VI) primary spermatocytes display a moderate immunoreaction. It is strongest in pachytene spermatocytes of stages I–IV, decreases in stage V, and is low during diakinesis and in secondary spermatocytes. Late spermatids usually show a stronger immunoreactivity than early spermatids. At stage V of spermatogenesis the late spermatids contain only few immunoreactive particles. Spermatozoa are free of SOx-immunoreactive mitochondria. In residual bodies small amounts of SOx-immunoreactive particles are seen. Compared to rat and hamster testis, SOx immunoreactivity of the human testis is less clearly stage-dependent and it is not confined to certain germ cell stages. As deduced from the findings in patients with spermatogenic disorders, the SOx immunoreactivity of spermatogonia in human testis seems to be of diagnostic relevance.  相似文献   

14.
Telomeres, the noncoding sequences at the ends of chromosomes, progressively shorten with each cellular division. Spermatozoa have very long telomeres but they lack telomerase enzymatic activity that is necessary for de novo synthesis and addition of telomeres. We performed a telomere restriction fragment analysis to compare the telomere lengths in immature rat testis (containing type A spermatogonia) with adult rat testis (containing more differentiated germ cells). Mean telomere length in the immature testis was significantly shorter in comparison to adult testis, suggesting that type A spermatogonia probably have shorter telomeres than more differentiated germ cells. Then, we isolated type A spermatogonia from immature testis, and pachytene spermatocytes and round spermatids from adult testis. Pachytene spermatocytes exhibited longer telomeres compared to type A spermatogonia. Surprisingly, although statistically not significant, round spermatids showed a decrease in telomere length. Epididymal spermatozoa exhibited the longest mean telomere length. In marked contrast, telomerase activity, measured by the telomeric repeat amplification protocol was very high in type A spermatogonia, decreased in pachytene spermatocytes and round spermatids, and was totally absent in epididymal spermatozoa. In summary, these results indicate that telomere length increases during the development of male germ cells from spermatogonia to spermatozoa and is inversely correlated with the expression of telomerase activity.  相似文献   

15.
Spermatogenesis in male Atlantic halibut (Hippoglossus hippoglossus L.) was investigated by sampling blood plasma and testicular tissue from 15-39-month-old fish. The experiment covered a period in which all fish reached puberty and completed sexual maturation at least once. The germinal compartment in Atlantic halibut testis appears to be organized in branching lobules of the unrestricted spermatogonial type, because spermatocysts with spermatogonia were found throughout the testis. Spermatogenesis was characterized histologically, and staged according to the most advanced type of germ cell present: spermatogonia (Stage I), spermatogonia and spermatocytes (Stage II), spermatogonia, spermatocytes and spermatids (Stage III), spermatogonia, spermatocytes, spermatids and spermatozoa (Stage IV), and regressing testis (Stage V). Three phases could be distinguished: first, an initial phase with low levels of circulating testosterone (T; quantified by RIA) and 11-ketotestosterone (11-KT; quantified by ELISA), spermatogonial proliferation, and subsequently the initiation of meiosis marked by the formation of spermatocytes (Stage I and II). Secondly, a phase with increasing T and 11-KT levels and with haploid germ cells including spermatozoa present in the testis (Stage III and IV). Thirdly, a phase with low T and 11-KT levels and a regressing testis with Sertoli cells displaying signs of phagocytotic activity (Stage V). Circulating levels of 11-KT were at least four-fold higher than those of T during all stages of spermatogenesis. Increasing plasma levels of T and 11-KT were associated with increasing testicular mass throughout the reproductive cycle. The absolute level of, or the relation between, testis growth and circulating androgens were not significantly different in first time spawners compared to fish that underwent their second spawning season. These results provide reference levels for Atlantic halibut spermatogenesis.  相似文献   

16.
17.
18.
Effects of highly purified antiserum (AS) to follicle stimulating hormone (FSH) on testicular function was studied in immature rats. Treatment with FSHAS for 10 days, from 25-34, decreased weights of the testis (p .001) and increased weights of the epididymis (p .05). Numbers of the cell types in the seminiferous epithelium, particularly Type A spermatogonia pachytene spermatocytes and spermatids, were markedly reduced, possibly due to: 1) decreased division of the initial stem cells, 2) impairment of division of Type B spermatogonia and their transformation to pachytene spermatocytes, and 3) desquamation and degeneration of pachytene spermatocytes and spermatids. FSHAS also affected the sertoli cell function which was reflected in the decreased binding of androgens to supernatant fraction of the testis and epididymides. Treatment with luteinizing hormone-AS for 5 days did not affect testicular function but the binding of androgens to the supernatants of the caput and cauda epididymides and ventral prostate was significantly reduced (p .001). These data indicate that FSH is necessary for the maintenance of the cellular integrity of the seminiferous epithelium during the completion of the 1st wave of spermatogenesis.  相似文献   

19.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号