首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The normal system functioning in the utilization of metabolizable germinants by both heat-sensitive and heat-resistant spores of Clostridium perfringens was inactivated by heat or by treatment of the spores with alkali to remove a soluble coat protein layer. Altered spores were incapable of germination (less than 1%) and outgrowth (less than 0.0005%) in complex media without the addition of either lysozyme or an initiation protein produced by C. perfringens. The addition of either of these agents permitted, in the case of alkali-treated spores, both 90 to 95% germination and outgrowth, as measured by colony formation. In the case of heat-damaged spores, only 50% germination and 2% outgrowth resulted from addition of the initiation protein, whereas lysozyme permitted 85% germination and 8% outgrowth. Alteration of the spores by heat or alkali apparently inactivated the normal lytic system responsible for cortical degradation during germination. Kinetics of production of the initiation protein and conditions affecting both its activity and that of lysozyme on altered spores are described.  相似文献   

2.
A novel slide-culture technique was used to study germination and outgrowth of Bacillus popilliae spores without disturbing the microenvironment. Infective spores formed in larvae required 24 hr to begin outgrowth, whereas noninfective spores from colonies initiated outgrowth in 12 hr. Dissolution of the paraspore coincided with outgrowth and not with germination of the attached spore. Germination and outgrowth were asynchronous events and required several days in all cell populations, except for free spores.  相似文献   

3.
Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program “SporeTracker” allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less) and fewer grew out (48.4% less) after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased) and the distribution and average of the duration of germination itself (increased). However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.  相似文献   

4.
Oxidative stress-induced damage, including 8-oxo-guanine and apurinic/apyrimidinic (AP) DNA lesions, were detected in dormant and outgrowing Bacillus subtilis spores lacking the AP endonucleases Nfo and ExoA. Spores of the Δnfo exoA strain exhibited slightly slowed germination and greatly slowed outgrowth that drastically slowed the spores'' return to vegetative growth. A null mutation in the disA gene, encoding a DNA integrity scanning protein (DisA), suppressed this phenotype, as spores lacking Nfo, ExoA, and DisA exhibited germination and outgrowth kinetics very similar to those of wild-type spores. Overexpression of DisA also restored the slow germination and outgrowth phenotype to nfo exoA disA spores. A disA-lacZ fusion was expressed during sporulation but not in the forespore compartment. However, disA-lacZ was expressed during spore germination/outgrowth, as was a DisA-green fluorescent protein (GFP) fusion protein. Fluorescence microscopy revealed that, as previously shown in sporulating cells, DisA-GFP formed discrete globular foci that colocalized with the nucleoid of germinating and outgrowing spores and remained located primarily in a single cell during early vegetative growth. Finally, the slow-outgrowth phenotype of nfo exoA spores was accompanied by a delay in DNA synthesis to repair AP and 8-oxo-guanine lesions, and these effects were suppressed following disA disruption. We postulate that a DisA-dependent checkpoint arrests DNA replication during B. subtilis spore outgrowth until the germinating spore''s genome is free of damage.  相似文献   

5.
6.

Background

Germination is the irreversible loss of spore-specific properties prior to outgrowth. Because germinating spores become more susceptible to killing by stressors, induction of germination has been proposed as a spore control strategy. However, this strategy is limited by superdormant spores that remain unaffected by germinants. Harsh chemicals and heat activation are effective for stimulating germination of superdormant spores but are impractical for use in a hospital setting, where Clostridium difficile spores present a challenge. Here, we tested whether osmotic activation solutes will provide a mild alternative for stimulation of superdormant C. difficile spores in the presence of germinants as previously demonstrated in several species of Bacillus. In addition, we tested the hypothesis that the limitations of superdormancy can be circumvented with a combined approach using nisin, a FDA-approved safe bacteriocin, to inhibit outgrowth of germinated spores and osmotic activation solutes to enhance outgrowth inhibition by stimulating superdormant spores.

Principal Findings

Exposure to germination solution triggered ∼1 log10 colony forming units (CFU) of spores to germinate, and heat activation increased the spores that germinated to >2.5 log10CFU. Germinating spores, in contrast to dormant spores, became susceptible to inhibition by nisin. The presence of osmotic activation solutes did not stimulate germination of superdormant C. difficile spores exposed to germination solution. But, in the absence of germination solution, osmotic activation solutes enhanced nisin inhibition of superdormant spores to >3.5 log10CFU. The synergistic effects of osmotic activation solutes and nisin were associated with loss of membrane integrity.

Conclusions

These findings suggest that the synergistic effects of osmotic activation and nisin bypass the limitations of germination as a spore control strategy, and might be a novel method to safely and effectively reduce the burden of C.difficile spores on skin and environmental surfaces.  相似文献   

7.
Germination and outgrowth are critical steps for returning Bacillus subtilis spores to life. However, oxidative stress due to full hydration of the spore core during germination and activation of metabolism in spore outgrowth may generate oxidative DNA damage that in many species is processed by apurinic/apyrimidinic (AP) endonucleases. B. subtilis spores possess two AP endonucleases, Nfo and ExoA; the outgrowth of spores lacking both of these enzymes was slowed, and the spores had an elevated mutation frequency, suggesting that these enzymes repair DNA lesions induced by oxidative stress during spore germination and outgrowth. Addition of H2O2 also slowed the outgrowth of nfo exoA spores and increased the mutation frequency, and nfo and exoA mutations slowed the outgrowth of spores deficient in either RecA, nucleotide excision repair (NER), or the DNA-protective α/β-type small acid-soluble spore proteins (SASP). These results suggest that α/β-type SASP protect DNA of germinating spores against damage that can be repaired by Nfo and ExoA, which is generated either spontaneously or promoted by addition of H2O2. The contribution of RecA and Nfo/ExoA was similar to but greater than that of NER in repair of DNA damage generated during spore germination and outgrowth. However, nfo and exoA mutations increased the spontaneous mutation frequencies of outgrown spores lacking uvrA or recA to about the same extent, suggesting that DNA lesions generated during spore germination and outgrowth are processed by Nfo/ExoA in combination with NER and/or RecA. These results suggest that Nfo/ExoA, RecA, the NER system, and α/β-type SASP all contribute to the repair of and/or protection against oxidative damage of DNA in germinating and outgrowing spores.  相似文献   

8.
RNA was extracted from dormant and germinating Bacillus subtilis 168 spores (intact spores and chemically decoated spores) by using rapid rupture followed by acid–phenol extraction. Spore germination progress was monitored by assaying colony forming ability before and after heat shock and by reading the optical density at 600 nm. The purity, yield, and composition of the extracted RNA were determined spectrophotometrically from the ratio of absorption at 260 nm to that at 280 nm; in a 2100 BioAnalyzer, giving the RNA yield/108 spores or cells and the distribution pattern of rRNA components. The method reported here for the extraction of RNA from dormant spores, as well as during different phases of germination and outgrowth, has proven to be fast, efficient and simple to handle. RNA of a high purity was obtained from dormant spores and during all phases of germination and growth. There was a significant increase in RNA yield during the transition from dormant spores to germination and subsequent outgrowth. Chemically decoated spores were retarded in germination and outgrowth compared with intact spores, and less RNA was extracted; however, the differences were not significant. This method for RNA isolation of dormant, germinating, and outgrowing bacterial endospores is a valuable prerequisite for gene expression studies, especially in studies on the responses of spores to hostile environmental conditions.  相似文献   

9.
A study was made of certain cations present in hemolymph and alimentary tract tissues of healthy and diseased European chafer larvae and the spores of Bacillus popilliae collected from diseased hemolymph. The major ions found in the hemolymph, in order of decreasing abundance, were potassium, magnesium, sodium, and calcium. Hemolymph of diseased larvae contained relatively higher concentrations of sodium, potassium, magnesium, iron, and zinc than hemolymph of healthy larvae. Concomitantly, the concentrations of ions were lower in the mid-gut and anterior intestinal tissues of diseased larvae. Only sodium decreased slightly in the diseased tissues of the rectum and rectal sac; other ions remained unchanged or increased. Little or no manganese or copper was detected in the hemolymph or tissues. The major cations of spores of B. popilliae were sodium, calcium, and magnesium. Small amounts of potassium, manganese, copper, iron, and zinc were detected in the spores. Based on calcium and dipicolinic acid determinations of the spores, sufficient calcium was found to allow for the formation of calcium dipicolinate in the expected concentrations.  相似文献   

10.
Pretreatment with ethidium bromide (5 μg/ml) followed by a water wash had no effect on unheated Bacillus subtilis spores, but the viability of these spores after heating was much lower than that of similarly heated spores exposed to water alone. The fate of water- or ethidium bromide-treated spores, unheated or heated, was followed by allowing them to germinate and outgrow in a minimal or a complex liquid medium. Spores exposed to ethidium bromide and then heated (85°C, 10 min) exhibited a developmental block during germination and outgrowth. Many of them were blocked at the stage when the bacterium emerged from the germinated spore. When 0.35 μg of ethidium bromide per ml was added to heated spores in the germination-growth medium, the outgrowth of heated spores was inhibited to the same extent as were pretreated spores. Ethidium bromide acted in the first hour of germination of heated spores since addition after this time was ineffective in inhibiting recovery events. Repair of heat-damaged spore DNA was detected during the first 2 h of germination. The addition of ethidium bromide (final concentration, 0.35 μg/ml) inhibited DNA repair during early outgrowth. Increased sensitivity of spores to heat after pretreatment with sublethal concentrations of ethidium bromide was due to the inhibition of the repair of heat-damaged DNA.  相似文献   

11.
Genetic recombination in sexual crosses of phycomyces   总被引:3,自引:1,他引:2       下载免费PDF全文
Sexual crosses between strains of Phycomyces blakesleeanus , involving three auxotrophic and one color marker and yielding a high proportion of zygospore germination, are described. Samples of 20–40 germ spores from 311 individual fertile germ sporangia originating from five two-factor and three three-factor crosses were characterized. The results show: (1) absence of any contribution of apogamic nuclei to the progeny, (2) confirmation of Burgeff's conjecture that the germ spores of any germ sporangium in most cases derive from one meiosis. In a cross involving two allelic markers the analysis of 175 pooled germ sporangia suggests an intragenic recombination frequency of 0.6%. All other factor combinations tested are unlinked. The bulk of the germ spores are homokaryotic. However, a small portion (4%) are heterokaryotic with respect to mating type.  相似文献   

12.
Gramicidin S is known to prolong the outgrowth stage of spore germination in the producing culture. Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to cell-surface hydrophobicity and germination of their spores. Parental spores were hydrophobic as determined by adhesion to hexadecane, whereas mutant spores showed no affinity to hexadecane. Addition of gramicidin S to mutant spores resulted in a high cell surface hydrophobicity and a delay in germination outgrowth. The hydrophobicity of parental spores was retained throughout most of the germination period. Hydrophobicity was lost as outgrowing spores entered into the stage of vegetative growth. The data indicate that gramicidin S is responsible for the hydrophobicity of B. brevis spores. It is suggested that in making spores hydrophobic, the antibiotic plays a role in concentrating the spores at interfaces where there is a higher probability of finding nutrients for germination and growth.Abbreviation GS Gramicidin S  相似文献   

13.
Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis).  相似文献   

14.

Background

Clostridium difficile is an anaerobic, spore-forming bacterium that is the most common cause of healthcare-associated diarrhea in developed countries. Control of C. difficile is challenging because the spores are resistant to killing by alcohol-based hand hygiene products, antimicrobial soaps, and most disinfectants. Although initiation of germination has been shown to increase susceptibility of spores of other bacterial species to radiation and heat, it was not known if triggering of germination could be a useful strategy to increase susceptibility of C. difficile spores to radiation or other stressors.

Principal Findings

Here, we demonstrated that exposure of dormant C. difficile spores to a germination solution containing amino acids, minerals, and taurocholic acid resulted in initiation of germination in room air. Germination of spores in room air resulted in significantly enhanced killing by ultraviolet-C (UV-C) radiation and heat. On surfaces in hospital rooms, application of germination solution resulted in enhanced eradication of spores by UV-C administered by an automated room decontamination device. Initiation of germination under anaerobic, but not aerobic, conditions resulted in increased susceptibility to killing by ethanol, suggesting that exposure to oxygen might prevent spores from progressing fully to outgrowth. Stimulation of germination also resulted in reduced survival of spores on surfaces in room air, possibly due to increased susceptibility to stressors such as oxygen and desiccation.

Conclusions

Taken together, these data demonstrate that stimulation of germination could represent a novel method to enhance killing of spores by UV-C, and suggest the possible application of this strategy as a means to enhance killing by other agents.  相似文献   

15.
《Experimental mycology》1994,18(3):221-229
Rivero, F., and Cerdá-Olmedo, E. 1994. Spore dormancy mutants of Phycomyces. Experimental Mycology 18, 221-229. The spores of the Zygomycete Phycomyces blakesleeanus are called dormant because few of them germinate when placed in a medium that sustains mycelial growth and development. Nearly all the spores germinate after activation, that is, exposure to heat or certain chemicals. We have looked for mutants whose spores would not need activation. Nine mutants formed authentic, but transient spores, which germinated spontaneously in the sporangium. Mutant mycelia had lower alcohol and aldehyde dehydrogenase activities and less glycogen than wild-type mycelia. The spontaneous germination and the metabolic alterations are attributed to the same recessive mutations. No differences were found between mutants and wild type in the cyclic AMP and fructose 2,6-bisphosphate concentrations in immature sporangia and the trehalase activity in the mycelia. In another mutant the spore primordia did not form spores, but remained viable for some time in the sporangium. The mutants were difficult to keep in the laboratory (except as lyophils); this stresses the importance of preventing spore germination in the sporangium.  相似文献   

16.
Germination of dormant spores of Bacillus species is initiated when nutrient germinants bind to germinant receptors in spores’ inner membrane and this interaction triggers the release of dipicolinic acid and cations from the spore core and their replacement by water. Bacillus subtilis spores contain three functional germinant receptors encoded by the gerA, gerB, and gerK operons. The GerA germinant receptor alone triggers germination with L-valine or L-alanine, and the GerB and GerK germinant receptors together trigger germination with a mixture of L-asparagine, D-glucose, D-fructose and KCl (AGFK). Recently, it was reported that the B. subtilis gerW gene is expressed only during sporulation in developing spores, and that GerW is essential for L-alanine germination of B. subtilis spores but not for germination with AGFK. However, we now find that loss of the B. subtilis gerW gene had no significant effects on: i) rates of spore germination with L-alanine; ii) spores’ levels of germination proteins including GerA germinant receptor subunits; iii) AGFK germination; iv) spore germination by germinant receptor-independent pathways; and v) outgrowth of germinated spores. Studies in Bacillus megaterium did find that gerW was expressed in the developing spore during sporulation, and in a temperature-dependent manner. However, disruption of gerW again had no effect on the germination of B. megaterium spores, whether germination was triggered via germinant receptor-dependent or germinant receptor-independent pathways.  相似文献   

17.
Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to germination of their spores produced in several media. Germination initiation occurred in the presence of nutrient broth orL-alanine but not with inosine, glucose, glycerol or fructose; the process was activated by heat. Parental and mutant spores behaved similarly in these experiments. During outgrowth, parental spores remained in this phase of germination much longer than did mutant spores, but only when the parental spores had been harvested from a sporulation medium where significant gramicidin S synthesis had occurred. When parental spores were extracted or treated with an enzyme that hydrolyzes gramicidin S, rapid outgrowth occurred. Adding exogenous gramicidin S or the extract from parental spores to mutant spores lengthened the outgrowth in a dose-dependent manner. The uptake of labeledL-alanine by parental spores was delayed compared to mutant spores in the presence or absence of chloramphenicol. These data suggest a mechanism of action for gramicidin S whereby it interferes in membrane function, such as transport or energy metabolism, in outgrowing spores.Abbreviations GS Gramicidin S - CFU colony-forming units  相似文献   

18.
Vinter, Vladimir (Syracuse University, Syracuse, N.Y.), and Ralph A. Slepecky. Direct transition of outgrowing bacterial spores to new sporangia without intermediate cell division. J. Bacteriol. 90:803-807. 1965.-A direct transition was observed of the primary cell developed after germination of Bacillus cereus spores into new sporangia without intermediate division stages. Two simple methods were used for replacement of outgrowing spores into diluted medium or saline. Elongated primary cells prevented from division by limitation of nutrients in the suspending medium were able to form new forespores in 8 hr and sporangia in 12 hr. These new sporangia were still marked by attached envelopes of the original spore. Under the same conditions, cells replaced during the first divisions quickly lysed. Spores formed in the elongated primary cell during "microcycle sporogenesis" possessed normal heat resistance and refractility and were later released from sporangia.  相似文献   

19.
Germination of resting spores is described in 2 Synchytrium species viz. Synchytrium lagenariae Mhatre and Mundkur and S. trichosanthidis Mhatre and Mundkur, parasitic on cucurbitaceous hosts. The resting spores of both species behave as prosorus in germination giving rise to an attached superficial sorus of sporangia. Several anomalies observed in germination are briefly described. Efficacy of methods inducing germination is discussed relative to the field conditions.  相似文献   

20.
Following ingestion of spores of Bacillus popilliae by grubs of the European chafer, Amphimallon majalis, vegetative rods were observed within phagocytic vacuoles of midgut columnar cells prior to establishing primary infection foci in regenerative nidi areas. This resulted in increased activity of regenerative nidi and extrusion of degenerating epithelial cells frequently containing vegetative rods of B. popilliae. Circulating hemocytes adhered to the hemocoelic surface of the basement membrane and formed inflammatory capsules immediately adjacent to the areas of bacterial proliferation. Bacilli in various stages of degradation were observed in membrane-limited vacuoles of both mesenteric epithelial cells and capsular hemocytes. Despite these host defense reactions, some vegetative cells resisted degradation and were successful in traversing the epithelial, basal lamina, and capsular barriers to enter the hemolymph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号