首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylamide gel electrophoresis of isolated cytoplasmic and chloroplast ribosomal ribonucleic acid species during the synchronous vegetative cell cycle of the eukaryote Chlamydomonas reinhardtii suggests that a separate control of cytoplasmic and chloroplast rRNA might exist. It was found that the amount of cytoplasmic rRNA linearly increased during the entire G1 phase of the cell cycle, whereas chloroplast rRNA accumulated only through 70% of the G1 period. The amount of cytoplasmic rRNA per mother cell remained constant during nuclear DNA synthesis but a gradual loss of chloroplast rRNA was noted at this time. A significant decline in all four rRNA species occurred at the time of cell division.  相似文献   

2.
IN VIVO SPECIFIC LABELING OF CHLAMYDOMONAS CHLOROPLAST DNA   总被引:9,自引:1,他引:8       下载免费PDF全文
When Chlamydomonas reinhardi is supplied with (methyl-3H)-thymidine, radioactivity is incorporated specifically into chloroplast DNA Chromatographic analysis of the products of enzymatic hydrolysis of the DNA reveals that only thymidine monophosphate has been labeled. Use of thymidine-6-3H yields an identical result. If thymidine-3H monophosphate is supplied, a small amount of radioactivity is incorporated into both nuclear and chloroplast DNA in proportion to the abundance of these DNA components. These observations are consistent with earlier suggestions that algae lack cytoplasmic thymidine kinase, but that the enzyme is present within their chloroplasts.  相似文献   

3.
Light-grown cells of Ochromonas danica, which contain a single chloroplast per cell, were labeled with [methyl-3H]thymidine for 3 h (0.36 generations) and the distribution of labeled DNA among the progeny chloroplasts was followed during exponential growth in unlabeled medium for a further 3.3 generations using light microscope autoradiography of serial sections of entire chloroplasts. Thymidine was specifically incorporated into DNA in both nuclei and chloroplasts. Essentially all the chloroplasts incorporated label in the 3-h labeling period, indicating that chloroplast DNA is synthesized throughout the cell cycle. Nuclear DNA has a more limited S period. Both chloroplast DNA and nuclear DNA are conserved during 3.3 generations. After 3.3 generations in unlabeled medium, grains per chloroplast followed a Poisson distribution indicating essentially equal labeling of all progeny chloroplasts. It is concluded that the average chloroplast in cells of Ochromonas growing exponentially in the light contains at least 10 segregating DNA molecules.  相似文献   

4.
In diploid human cells, the DNA precursor pool equilibration times for exogenous thymidine are about twice those for the thymidine analogue 5-bromodeoxyuridine (BUdR); in cells that were either transformed chemically or derived from malignant tumours, the pool equilibration times are the same for thymidine and 5-bromodeoxyuridine and are closer in value to the shorter (bromodeoxyuridine) times of the diploid cells. Thymidine, if present in the culture medium with BUdR, is incorporated into DNA preferentially in diploid cells (by 2 or 3 to 1). Discrimination against bromodeoxyuridine is evident within 2 h of incubation of the two precursors with diploid cells, but is not observed even after 24 h in any of the transformed cell lines tested. Experiments were performed to test the effect of inhibitors of the mammalian DNA polymerases alpha (N-ethylmaleimide) and beta (incubation of cells at 45 °C) upon the ability of cells to synthesise DNA and to incorporate thymidine preferentially when present with equimolar BUdR. In diploid cells, overall in vivo DNA synthesis is more sensitive to N-ethylmaleimide and more resistant to 45 °C treatment than is DNA synthesis in the transformed cell lines. N-Ethylmaleimide decreases the capacity of diploid cells to discriminate against BUdR, whereas heating increases it. Transformed cells treated with N-ethylmaleimide remain unable to discriminate against BUdR; some transformed lines, when heated at 45 °C, become less incapable of such discrimination.  相似文献   

5.
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both 32P[or-thophosphoric acid] (32P) and [14C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different 32P-incorporation patterns in the cell cycle. Considerable amounts of 32P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect 32P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [3H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with 32P. Most [3H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [3H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [3H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of 32P- and of [3H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle.  相似文献   

6.
Thymidylate synthetase and thymidine kinase activities in wild type strain M3b and in thymidine kinase-deficient mutant TU63 of Physarum polycephalum are studied. Whenever nuclear division occurs in macroplasmodia of wild type, thymidine kinase and thymidylate synthetase activities sharply increase, although the increase of thymidylate synthetase activity is less pronounced than thymidine kinase activity. This is also true for other investigated nuclear divisions during the life cycle of P. polycephalum. It is shown for the first time that thymidylate synthetase is a periodically fluctuating enzyme during the naturally synchronous nuclear division cycle of P. polycephalum with a peak of specific activity in the S phase. In macroplasmodia, as well as after germination of microsclerotia of M3b, thymidine kinase is the dominant enzyme, whereas at the time of the precleavage mitosis in sporulating macroplasmodia thymidylate synthetase is the predominant enzyme. This study describes and compares both dTMP-synthesizing enzymes during proliferation and differentiation of the same organism.  相似文献   

7.
Based on analysis by high pressure liquid chromatography, greater than 35% of the cytosine residues in chloroplast DNA of vegetative cells were found to be methylated constitutively in the nuclear gene mutation (me-1) of Chlamydomonas reinhardtii, which has an otherwise wild-type phenotype. Digestion of chloroplast DNA from vegetative cells and gametes of this mutant with restriction endonucleases Hpa II and Msp I reveals that in the 5′CCGG3′ sequence, CpG is methylated extensively, whereas CpC is only methylated occasionally. Hae III (5′GGCC3′) digestion of the mutant chloroplast DNA also shows extensive methylation of the GpC sequence. In contrast to the results of Sager and colleagues, which show a correlation between methylation of chloroplast DNA and transmission of chloroplast genes in crosses, our results with crosses of the me-1 mutant suggest that extensive chloroplast DNA methylation may be insufficient to account for the pattern of inheritance of chloroplast genes in Chlamydomonas.  相似文献   

8.
We describe the cDNA sequence for ARG7, the gene that encodes argininosuccinate lyase – a selectable nuclear marker – in Chlamydomonas reinhardtii. The 5′ end of the cDNA contains one more exon and the organisation of the mRNA is different from that predicted from the genomic sequence. When expressed under the control of the endogenous RbcS2 promoter, the 2.22-kb cDNA complements the arg7 mutation as well as the genomic DNA. A linear cDNA fragment lacking promoter sequences is also able to complement, suggesting that it could be used in promoter-trapping experiments. Despite the presence of a sequence encoding a potential chloroplast transit peptide in the cDNA the protein is not targeted to the chloroplast, nor can it complement the arg7 mutation when expressed there. By inserting a T7 bacteriophage promoter into the plasmid, a version of the cDNA which is able to complement both the C. reinhardtii arg7 mutant and the Escherichia coli argH mutant has been created. This modified Arg7 cDNA provides two advantages over the genomic DNA currently in use for gene tagging: it is shorter (6.2?kb versus 11.9?kb for pARG7.8φ3), and the selectable marker used in C. reinhardtii is the same as that used in E. coli, making plasmid rescue of the tag much more likely to succeed.  相似文献   

9.
The patterns of alanine dehydrogenase, glutamate dehydrogenase and malate dehydrogenase activity were studied during the normal vegetative cell cycle and during the process of gametic differentiation and dedifferentiation in synchronized cultures of Chlamydomonas reinhardtii. During all three phases of growth and differentiation the synthesis of DNA was also measured. During gametic differentiation all three enzyme levels were suppressed compared to vegetative cells although DNA and cell number were comparable. During gametic dedifferentiation no DNA synthesis occurred during the first 24 h cycle and only a doubling during the second. It was not until the third cycle that a normal 4-fold increase in DNA was observed. Cell number followed a similar pattern. Athough the levels of alanine dehydrogenase and malate dehydrogenase were uniformly low during the first cycle when glutamate dehydrogenase increased 4-fold, during the second cycle the patterns of these enzymes changed markedly. The enzymes did not attain levels characteristic of vegetative cells until the third cycle.  相似文献   

10.
A spontaneously arising nuclear mutation, ss-1, has been identified in Chlamydomonas reinhardtii that decreases both streptomycin and spectinomycin resistance levels about 10-fold after its introduction into all wild-type, streptomycin-resistant and spectinomycin-resistant strains examined. The mutations for resistance map to nuclear and uniparentally inherited (chloroplast) loci. In contrast, no modification of erythromycin resistance was detected after introducing ss-1 into wild-type strains or into strains carrying nuclear or uniparentally inherited erythromycin-resistance mutations. We suggest that ss-1 affects the small subunit of the chloroplast ribosome because others have shown that streptomycin and spectinomycin resistance in C. reinhardtii are associated with this subunit, whereas erythromycin resistance is associated with the large subunit. ss-1 shows no linkage with the nuclear locus for streptomycin resistance.  相似文献   

11.
V. Raghavan 《Protoplasma》1993,175(1-2):75-84
Summary Chloroplast activities of dark-imbibed (non-germinating) and photoinduced (germinating) spores of the sensitive fern,Onoclea sensibilis were compared to gain insight into the germination process. There were no changes in the number of chloroplasts or in the chlorophyll contents of the spore during dark-imbibition and during the early phase of germination. Levels of increase in the Chloroplast DNA content of dark-imbibed and photoinduced spores were nearly the same and were associated with autoradiographic incorporation of [3H]thymidine into the cytoplasm. However, incorporation of the label into the nucleus occurred only during photoinduction of spores. Analysis of Chloroplast and nuclear DNA contents by dot-blot hybridization with labeled gene-specific probes has confirmed that chloroplast DNA content of the spore increases during dark-imbibition and photoinduction, while increase in nuclear DNA occurs only in photoinduced spores. Chloroplasts isolated from dark-imbibed and photoinduced spores incorporated [3H]TTP into an acid-insoluble fraction identified as DNA. The results show that physiological activities of chloroplasts of dark-imbibed and photoinduced spores ofO. sensibilis are similar and support an exclusive role for nuclear DNA synthesis in spore germination.  相似文献   

12.
Chloroplasts isolated from Euglena gracilis incorporated both tritiated thymidine 5'-triphosphate and tritiated deoxyadenosine 5'-triphosphate into an acid-stable fraction. The incorporation was dependent on the presence of all four deoxynucleoside triphosphates and was sensitive to treatment with deoxyribonuclease and actinomycin D. It was demonstrated that bacterial contamination could not account for the incorporation of label. Extraction of DNA from the chloroplasts and subsequent density gradient centrifugation of the DNA in CsCl2 showed that the incorporation was into chloroplast DNA (ρ = 1.686) of high molecular weight.  相似文献   

13.
The activities throughout the cell cycle of thymidine kinase (EC 2.7.1.21), dihydrothymine dehydrogenase (EC 1.3.1.2), thymidine phosphorylase (EC 2.4.2.4) and dTMP phosphatase (EC 3.1.3.35) were measured in the Epstein-Barr virally transformed human B lymphocyte line LAZ-007. Cells were synchronised at different stages of the cell cycle using the technique of centrifugal elutriation. The degree of synchrony in each cycle-stage cell population was determined by flow microfluorimetric analysis of DNA content and by measurement of thymidine incorporation into DNA. The activity of the anabolic enzyme thymidine kinase was low in the G1 phase cells, but increased many-fold during the S and G2 phases, reaching a maximum after the peak of DNA synthesis, then decreasing in late G2 + M phase. By contrast, the specific activities of the enzymes involved in thymidine and thymidylate catabolism, dihydrothymine dehydrogenase, thymidine phosphorylase and dTMP phosphatase remained essentially constant throughout the cell cycle, indicating that the fate of thymidine at different stages of the cell cycle is governed primarily by regulation of the level of the anabolic enzyme thymidine kinase and not by regulation of the levels of thymidine catabolising enzymes.  相似文献   

14.
A. Lüttke  S. Bonotto 《Planta》1981,153(6):536-542
Chloroplast DNA (cpDNA) distribution in the giant unicellular, uninucleate alga Acetabularia mediterranea was analyzed with the DNA-specific fluorochrome 4'6-diamidino-2-phenylindole (DAPI) at various stages of the cell cycle. The number of chloroplasts exhibiting DNA/DAPI fluorescence changes during the cell's developmental cycle: (1) all chloroplasts in germlings contain DNA; (2) the number of plastids with DNA declines during polar growth of the vegetative cell; (3) it increases again prior to the transition from the vegetative to the generative phase; (4) several nucleoids of low fluorescence intensity are present in the chloroplasts of the gametes. The temporal distribution of the number of chloroplasts with DNA appears to be linked to the different mode of chloroplast division and growth during the various stages of development. The chloroplast cycle in relation to the cell cycle is discussed.Abbreviations cpDNA chloroplast DNA - DAPI 4,6-diamidino-2-phenylindole  相似文献   

15.
A mutant of Escherichia coli lacking the catabolic enzyme thymidine phosphorylase readily incorporates exogenous thymidine into deoxyribonucleic acid (DNA) even when provided at concentrations as low as 0.2 mug/ml. Incorporation by this prototrophic strain occurs specifically into DNA, since, with radioactively labeled thymidine, (i) more than 98% is incorporated into alkali-stable material, (ii) at least 90% is recovered as thymine after brief formic acid hydrolysis, and (iii) at least 90% is incorporated into material with the buoyant density of DNA. During growth in medium containing thymidine, the bacteria obtain approximately half of their DNA thymines from the exogenous thymidine and half from endogenous synthesis. The thymines and cytosines of DNA can be simultaneously and specifically labeled by thymidine-2-(14)C and uridine-5-(3)H, respectively. The mutant, which does not degrade thymidine, retains the ability to degrade the thymidine analogue 5-bromodeoxyuridine.  相似文献   

16.
The effects of 5-fluorodeoxyuridine and methotrexate on [3H]thymidine and 32P labeling of mtDNA were studied in two lines of mouse L-cells. LMTK- cells, which lack the major cellular thymidine kinase (EC 2.7.1.21) but contain a genetically distinct mitochondrial enzyme, were compared to LA9 cells, which contain both thymidine kinase activities. LMTK- cells were resistant to 5-flurodeoxyuridine by a factor of 200 in comparison to LA9 cells. In both cells lines appropriate drug treatment increased utilization of exogenous thymidine for mtDNA synthesis. The maximum enhancement was 10- to 12-fold for LA9 cells and approximately 20-fold for LMTK- cells when treated with 10 muM methotrexate. The rates of mtDNA and nuclear DNA synthesis during drug treatment were analyzed with 32P labeling and 5-bromo-2'-deoxyuridine density labeling experiments. Synthesis of both mtDNA and nuclear DNA were strongly inhibited by drug treatment of either LA9 or LMTK- cells in the absence of exogenous thymidine. The rate of mtDNA synthesis substantially exceeded that of nuclear DNA in LA9 cells treated with 4 muM 5-fluorodeoxyuridine and less than 5 muM thymidine. Both synthetic rates approached those of untreated LA9 control cultures if 20 muM thymidine was present during 5-fluorodeoxyuridine treatment. In contrast, in LMTK- cells treated with 10 muM methotrexate and 20 muM thymidine, mtDNA synthesis continued at 50 to 60% of the control rate for at least 10 hours while nuclear DNA synthesis was 96% inhibited. Synthesis of mtDNA mass-labeled in both strands with 5-bromouracil occurred when LMTK- cells were incubated for 30 hours with 10 muM methotrexate and 20 muM 5-bromodeoxyuridine. These results indicate that mtDNA synthesis is resistant to a limitation of the thymidine triphosphate supply and is not strictly dependent upon concomitant nuclear DNA synthesis in these cells.  相似文献   

17.
Thymidine kinase (TK) and deoxycytidine kinase (dCK) activity levels, [3H]thymidine (TdR) and 5-bromo-2′-deoxyuridine (BUdR) incorporation and 5-fluoro-2′-deoxyuridine (FUdR) sensitivity have been compared in TK-deficient (TU63 and TU84) and normal (TU291 and M3b) strains of the myxomycete, Physarum polycephalum. The mutants had about 2% of the TK and 100% of the dCK activity of wild-type (wt) strains. They incorporated some TdR into both nuclear (nDNA) and mitochondrial DNA (mtDNA) but incorporated too little BUdR to give a buoyant density shift in nuclear DNA. They grew in the presence of levels of FUdR which completely blocked DNA synthesis in TU291. The FUdR sensitivity of strain M3b could be increased by supplementing growth medium with folic acid.  相似文献   

18.
The 5′ untranslated region of the chloroplast psbA mRNA, encoding the D1 protein, is processed in Chlamydomonas reinhardtii. Processing occurs just upstream of a consensus Shine-Dalgarno sequence and results in the removal of 54 nucleotides from the 5′ terminus, including a stem-loop element identified previously as an important structure for D1 expression. Examination of this processing event in C. reinhardtii strains containing mutations within the chloroplast or nuclear genomes that block psbA translation reveals a correlation between processing and ribosome association. Mutations within the 5′ untranslated region of the psbA mRNA that disrupt the Shine-Dalgarno sequence, acting as a ribosome binding site, preclude translation and prevent mRNA processing. Similarly, nuclear mutations that specifically affect synthesis of the D1 protein specifically affect processing of the psbA mRNA. In vitro, loss of the stem-loop element does not prohibit the binding of a message-specific protein complex required for translational activation of psbA upon illumination. These results are consistent with a hierarchical maturation pathway for chloroplast messages, mediated by nuclear-encoded factors, that integrates mRNA processing, message stability, ribosome association, and translation.  相似文献   

19.
Resistance to 6-thioguanine was induced by 5-bromodeoxyuridine (BUdR) in synchronous Chinese hamster cells. The yield of mutant colonies was not proportional to the amount of BUdR incorporated into DNA; thus mutants were not due to mispairing of BUdR with guanine during replication. Few mutants were induced until BUdR concentrations exceeded that of the intracellular thymidine triphosphate pool and mutant yield was depressed by addition of thymidine to the medium. These data suggest that BUdR exerts an allosteric effect on the DNA synthesizing system which renders it more error prone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号