首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible multipotential nature of the neural retina of early chick embryos was examined by the technique of clonal cell culture. Cultures were prepared from cells dissociated from freshly excised neural retinas of 3.5-day-old chick embryos or from cells harvested from primary highdensity cultures. The following four colony types were obtained: colonies differentiating into “lentoid bodies”; colonies with pigment cells; colonies with both “lentoid bodies” and pigment cells; and colonies comprised entirely of unidentifiable cells. Neuronal differentiation occurred frequently in the early stages of culture (up to about 10 days). In some of these neuronal colonies, “lentoid bodies” and, rarely, both “lentoid bodies” and pigment cells differentiated after a further culture period of up to 30 days. Secondary colonies established from primary colonies after 9–10 days demonstrated that these original colonies fell into four different categories: those giving rise to secondary colonies containing only “lentoid bodies,” those giving rise to pigmented colonies only, those developing both lentoid and pigmented colonies, and finally those which gave rise to secondary colonies of all three types, lentoid, pigmented, and mixed colonies. When primary pigmented colonies were recloned at about 30 days after inoculation, the differentiated pigment cells transdifferentiated into lens. Whether multispecific colonies were really of clonal origin or not is discussed. The possible presence of a multipotent progenitor cell able to give rise to multispecific clones in the neural retina of 3.5-day-old chick embryos is suggested. A sequence of differentiation starting from multipotent neural retinal cells to be terminated with lens through the differentiation of neuronal and pigment cells is hypothetically proposed.  相似文献   

2.
Dissociated cells of neural retinas of 3.5-day-old chick embryos (stages 20–21) were cultured as a monolayer in order to examine their differentiation in vitro. These cells started to grow actively soon after inoculation and formed a confluent sheet within which neuroblast-like cells with long cytoplasmic processes were differentiated by 8 days. At about 16 days the differentiation of both lentoid bodies and foci of pigment cells was observed, while neuronal structure disappeared. The numbers of lentoid bodies and foci of pigmented cells continued to increase up to 30 days, when primary cultures were terminated. The increase in δ-crystallin content, as measured by quantitative immunoelectrophoresis assay using rabbit antiserum against δ-crystallin, was consistent with the increase in the number of lentoid bodies in cultures. The amount of α-crystallin per culture, estimated by the same technique as above, reached a maximum at 16 days and decreased slightly during further culture. The differentiation of both lentoid bodies and pigment cells was observed also in cultures of the second generation. The results demonstrate that cells of the undifferentiated neuroepithelium of 3.5-day-old embryonic retinas can achieve at least three differentiations, neuronal, lens, and pigment cells, in vitro. We discuss several differences between the present results and the previous ones from in vitro cultures of 8- to 9-day-old embryonic neural retinas.  相似文献   

3.
Neural retinal cells of human fetuses at approximately 9 and 15 weeks after conception were cultured in vitro. In early stages of culturing (up to about 10 days), a number of neuronal cells with axon-like processes were formed. Within about 20 days, many neuronal cells started to degenerate, while a number of “lentoid bodies” were identified by immunoelectrophoresis and immunofluorescent techniques using anti-rat lens serum which cross-reacted with human crystallins. Ultrastructural observations also revealed that cells of “lentoid bodies” represent typical profiles of lens fibers.  相似文献   

4.
Dissociated cells of the lens epithelium of newly hatched chickens were cultured in vitro to investigate whether cells actively grown in culture retain their own differentive entiative traits to form lens fibers. After an exponential growth phase of the flattened epithelial cells, a number of “islets” of smaller epithelial cells with polygonal shape appeared. Along the periphery of these islets, the characteristic morphological change which leads to the formation of spherical bodies was observed. Electron microscopic observation showed the differentiation of lens fibers in these spherical bodies comparable to those in the lens in situ. Accumulation of δ-chrystallin was confirmed in such “lentoid” bodies. Outgrowth of the lens epithelial cells was maintained in in vitro culture up to about 50 days with several subculturings. The formation of lentoid bodies occurred in each subculture generation, which started from a homogeneous population of flattened epithelial cells. The present culture conditions permit the maintenance of such a population of cells that have a high growth potential and stably retains their differentiative trait to form lens fiber, even after repeated replication under in vitro conditions.  相似文献   

5.
Dissociated cells of neural retinas of 3.5-day-old chick embryos differentiated into “lentoid bodies” within about 10–12 days when cultured in vitro. Protein synthesis of these cultured cells was studied with the use of SDS-polyacrylamide gel electrophoresis, affinity chromatography, and autoradiography combined with immunological techniques. Incorporation of [14C]leucine into total proteins, α-crystallin, and δ-crystallin was estimated after increasing times of culture up to about 30 days. Isotope incorporation into δ-crystallin was detected at 9 days, and it increased sevenfold after another 17 days. α-Crystallin was also first detected at 9 days, but its relative content reached a maximum at 12 days and then decreased gradually. The ratio of δ-crystallin synthesis to total protein synthesis increased up to 40% at 26 days, while that of α-crystallin synthesis remained 3% throughout the culture period. These results show that lens differentiation from neural retinal cells is associated with the preferential synthesis of lens crystallins, particularly of δ-crystallin.  相似文献   

6.
During long-term cell culture of 8-day embryonic chick neural retina, lentoid bodies containing lens crystallins are developed. Although very low levels of crystallin can be detected in the embryonic neural retina, gross synthesis of each major crystallin class (α, anodal β, cathodal β, and δ) begins only after 12–16 days in culture. This occurs at least 10 days before lentoid bodies can be distinguished by eye. The concentration of each crystallin class was determined during lentoid development in cultures of both neural retina and lens epithelium. The proportions of crystallins in lentoid-containing cultures do not resemble those of embryonic lens fibres. Comparisons between two chick strains (N and Hy-1) differing in their growth rates revealed several differences in the crystallin compositions of lentoid bodies. These differences imply independent quantitative regulation for most or all of the crystallins.  相似文献   

7.
The crystallin synthesis of rat lens cells in cell culture systems was studied in relevance to their terminal differentiation into lens fibers. SDS-gel electrophoresis combined with several immunological techniques showed that γ-crystallin is a fiber-specific lens protein and is not localized in the epithelium of either newborn or adult lenses. When lens epithelial cells of newborn rats were cultured in vitro , α-crystaIlin was detected in many, but not all, of cells cultured for 10 days. Cells with α-crystallin gradually changed their shape into a flattened filmy form and finally differentiated into lentoid bodies. The differentiation of lentoid bodies was also found in cultures of epithelial cells obtained from adult lenses. The molecular constitution of lentoid bodies was the same as that of lens fibers in situ . The differentiation of lentoid bodies occurred successively for 5 months in cultures of lens epithelial cells. Most of the proliferating cells, however, lost α-crystallin during the culture period. Thereafter, they did not show any sign of further differentiation into lens fibers. Four clonal lines were established from these cells. One protein which is specific to the lens epithelium and the neural retina in situ (tentatively named as βu-crystallin) was maintained in all lines, suggesting that some specific properties of ocular cells remain in the lined cells.  相似文献   

8.
Cells dissociated from neural retina of 3.5-day-old chick embryos transdifferentiated extensively into lens cells under the conditions of a cell culture for 3 to 4 weeks. In early satges of cell culture by about 10 days, cultures consisted of small round cells often with cytoplasmic processes(N-cells) and flattened epithelial cells (E-cells). Only N-cells were stained with a fluorescent dye Merocyanine 540. When cells harvested from early cultures were separated into two fractions by centrifugation in Percoll gradient, the specific activity of choline acetyltransferase was much higher in the fraction consisting mainly of N-cells than in other fraction mainly of E-cells. Continuous daily observations as well as cinematographic observations of living cultures indicate that lentoid bodies were often formed in the locations where clusters of N-cells had been found in early stages of culturing. The possibility of transdifferentiation of N-cell clusters into lentoid bodies is discussed.  相似文献   

9.
Cells from pigmented retina of 8- to 9-day-old chick embryos were cultured under two different conditions: on noncoated (NS) or collagen-coated (CS) substrates. Although cells on CS seemed to start dividing 2 to 3 days earlier than those on NS, their early growth rates were basically similar. Cells on CS stopped growing after attaining confluency and formed a monolayer, while cells on NS continued to grow after confluency and overlapped each other. In early growth phase, cells on both substrates became depigmented. Cells became repigmented earlier on CS than on NS. The average melanin content of cells in confluent cultures on CS was two to three times higher than that of cells on NS. By Day 30 “lentoid bodies” were formed only in cultures on NS. Immunoelectrophoretic tests showed the presence of all crystallins (α-, β-, and δ) in cultures on NS but not in cultures on CS. It is concluded that a collagen substrate inhibits “transdifferentiation” of pigmented retinal cells into lens during cell culture.  相似文献   

10.
When dissociated cells of neural retinae of 9-day-old chick embryos were cultured in Eagle's minimum essential medium supplemented with dialyzed fetal calf serum, both the proliferation and differentiation of the neural retinal cells were inhibited. These cells remained quiescent and flattened. When ascorbic acid was added to such a medium, the cells started to grow and differentiated into lentoid bodies and pigmented cells after about 10 days.  相似文献   

11.
Neural retinal cells of 3.5-day-old quail embryos were cultured as a monolayer to examine their potentials for differentiation in vitro. The "foreign" differentiation into lentoid and pigment cells was much affected by the choice of medium (Eagle's MEM and Ham's F–12); in Eagle's MEM, neural retinal cells differentiated extensively into lentoid bodies and pigment cells, as previously reported in cultures of chick neural retinal cells, while in Ham's F–12, though the cells proliferated as well as in Eagle's MEM, the "foreign" differentiation is inhibited. When primary cultures were transferred to secondary cultures, the occurrence of "foreign" differentiation did not depend on the medium used for the primary culturing, but wholly on the medium used for secondary cultures. This difference in differentiation in two different media was quantitatively substantiated by measuring the amounts of α-, δ-crystallins and melanins of cultured cells.  相似文献   

12.
Dissociated cells of brains (tel- and diencephalons) of 3.5-day-old chick embryos were cultivated in vitro under the cell culture conditions which are known to be permissive for neural retinal cells (NR cells) to transdifferentiate into lens and/or pigmented epithelial cells (PE cells). The differentiation of lentoid bodies (LBs) with lens-specific (δ-crystallin and PE cells with melanin granules was observed in such brain cultures.
LBs appeared in two different phases, i. e., 2–3 days and 16–30 days of cultivation, and after 40 days of culture these structures were formed in all 60 culture dishes. Sometimes, LBs were observed in foci of PE cells formed during earlier stages of brain cultures. When similar brain cultures were prepared with older embryos of 5-, 8.5-, 14-, and 16-days of incubation, no differentiation of lens and PE cells was observed.  相似文献   

13.
Clonal cultures with 1,000–3,000 cells were prepared from cells harvested from high density cultures of neural retina of 8-day-old chick embryos. About 1.14% and 0.31% of inoculated cells developed into recogniziable colonies in Eagle's MEM and in Ham's F-12 supplemented with fetal calf serum respectively. Of these colonies, lentoid bodies of authentic lens nature were differentiated in 10% and 33.52% in MEM and F-12 respectively. Cells harvested from high density cultures of the anterior and posterior portions of the neural retina were clonally cultured. Plating efficiency was much higher in the anterior cells than in the posterior ones and clonies with lentoid differentiation were developed only in clonal cultures of the anterior cells.  相似文献   

14.
Our paper describes some morphological peculiarities ofMycoplasma bodies located in vascular bundles ofNicotiana glauca Grah. and tomato infected with potato witches' broom disease. The influence of postfixation on the density of bodies and possible development of artifacts was studied in particular. It was found that bodies of adjoining cells may have a different shape. Also elementary bodies, approximately of uniform diameter, may occur in masses in close proximity to the cells containing “adult”Mycoplasma bodies. Deformed large bodies giving in a certain position the impression of “vacuolization” are evidently degenerated saucershaped forms. In addition toMycoplasma some other bodies with different inner structure were observed in the same cells.  相似文献   

15.
16.
A culture system was developed which permitted the differentiation of chicken lens epithelial cells to lentoid bodies which contained several cell layers, accumulated high levels of delta-crystallin, and produced extensive gap junctions. This differentiation process was prevented when the cells were infected with a temperature-sensitive src mutant of Rous sarcoma virus and maintained at the permissive temperature. These transformed cells continued to proliferate and also synthesized the major lens gap junction protein, MP28, at near-normal rates. However, this MP28 was not assembled to produce gap junctions. Cultures shifted to the nonpermissive temperature formed lentoid bodies similar to those in uninfected lens cultures, including the establishment of gap junctions containing MP28.  相似文献   

17.
Cells of Distyostelium discoideum representing four developmental stages were atuo-analysed for constituent monosaccharides and their compositions compared. Rhamnose, ribose, fucose, glucose, mannose, galactose, glucosamine, galactosamine and an unidentified sugar were recovered after hydrolysis in 2 M HCl for 2 h at 100°C. The relative proportions of the individual sugars were found to vary as a function of development. The largest variations were in the proportions contributed by galactose (from 2% of vegetative cell carbohydrate to 12% of the carbohydrate of fruiting bodies) and galactosamine (present in measurable quantity only in fruiting bodies).Plasma membrane “ghosts” were found to have the same monosccharide constituents as whole cells, but in different proportions. Mannose contributed over 24% of the total carbohydrate recovered from aggregating cell “ghosts”, but only 13% of carbohydrate recovered from “ghosts” prepared from vegetative cells. Galactose was the most abundant sugar recovered from vegetative “ghosts”, and was second only to mannose in aggregating “ghosts”.  相似文献   

18.
19.
Mutant chickens, Hy-1 and Hy-2, show abnormalities in growth and differentiation of the lens epithelium. In this study, neural retinal cells (NR cells) from 3.5-day-old embryos of these mutants were cultured, and the differentiation in vitro was compared with the cells of the normal strain. Hy-1 cells in vitro were characterized by a delay in the first appearance of neuronal cells (N-cells) and by excessive production of this cell type at later stages. By contrast, the Hy-2 cells were indistinguishable from the normal cells in the early phase of culturing. In spite of the marked difference of Hy-1 NR cells in neuronal differentiation up to about 7 days in culture, the transdifferentiation of lens and pigmented cells occurred to a similar extent and with the same time schedule as cultures of normal cells. A number of lentoid bodies were formed by about 10 days. The relative composition of the three major classes of crystallins in transdifferentiated lens cells was almost identical between normal and Hy-1 strains. The results were discussed in comparison with the previous results of cell culture of NR of 8-day embryonic mutant chickens, and it was concluded that the process of transdifferentiation in cell culture is different between NR from 3.5-day-old and 8-day-old embryos.  相似文献   

20.
We have used a retroviral vector (RCAS) to overexpress wild-type chicken c-Jun or a deletion mutant of chicken c-Jun (JunΔ7) lacking the DNA binding region to investigate the possible role of c-Jun in lens epithelial cell proliferation and differentiation. Both constructs were efficiently expressed in primary cultures of embryonic chicken lens epithelial cells. Overexpression of c-Jun increased the rate of cell proliferation and greatly delayed the appearance of “lentoid bodies,” structures which contain differentiated cells expressing fiber cell markers. Excess c-Jun expression also significantly decreased the level of βA3/A1-crystallin mRNA, without affecting αA-crystallin mRNA. In contrast, the mutated protein, JunΔ7, had no effect no proliferation or differentiation but markedly increased the level of αA-crystallin mRNA in proliferating cell cultures. These results suggest that c-Jun or Jun-related proteins may be negative regulators of αA- and βA3/A1-crystallin genes in proliferating lens cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号