首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The ERG of the dragonfly ocellus has been analyzed into four components, two of which originate in the photoreceptor cells, two in the ocellar nerve fibers (Ruck, 1961 a). Component 1 is a sensory generator potential, component 2 a response of the receptor axons. Component 3 is an inhibitory postsynaptic potential, component 4, a discharge of afferent nerve impulses in ocellar nerve fibers. Responses to flickering light are examined in terms of this analytic scheme. It has been found that the generator potential can respond to higher rates of flicker—up to 220/sec.—than can the receptor axon responses, the postsynaptic potential, or the ocellar nerve impulses. The maximum flicker fusion frequency as measured by fusion of the ERG is that of the sensory generator potential itself.  相似文献   

2.
Dorsal ocelli are small cup-like organs containing a layer of photoreceptor cells, the short axons of which synapse at the base of the cup with dendritic terminals of ocellar nerve fibers. The ocellar ERG of dragonflies, recorded from the surface of the receptor cell layer and from the long lateral ocellar nerve, contains four components. Component 1 is a depolarizing sensory generator potential which originates in the distal ends of the receptor cells and evokes component 2. Component 2 is believed to be a depolarizing response of the receptor axons. It evokes a hyperpolarizing postsynaptic potential, component 3, which originates in the dendritic terminals of the ocellar nerve fibers. Ocellar nerve fibers in dragonflies are spontaneously active, discharging afferent nerve impulses (component 4) in the dark-adapted state. Component 3 inhibits this discharge. The ERG of the cockroach ocellus is similar. The main differences are that component 3 is not as conspicuous as in the dragonflies and that in most cases ocellar nerve impulses appear only as a brief burst at "off." In one preparation a spontaneous discharge of nerve impulses was observed. As in the dragonflies, this was inhibited by illumination.  相似文献   

3.
The electroretinogram (ERG) of the adult cabbage looper (Trichoplusia ni) ocellus has been studied by extracellular recording methods. Using white light stimulation, the ERG was found to have four components, two of which differ from those of ocelli previously studied. Here component 3 is an excitatory post-synaptic potential (EPSP) and component 4 is an excitatory spike discharge from the ocellar second-order neurons. The excitatory nature of these components has been verified by two experiments. In a light adaptation experiment decreased stimulus intervals caused a reduction in the number of excitatory spikes. In an experiment with the anticholinesterase tetraethylpyrophosphate (TEPP), treatment of the preparation abolished the excitatory spike discharge and reduced the magnitude of the EPSP.  相似文献   

4.
Fine structure of the dorsal ocellus of the worker honeybee   总被引:1,自引:0,他引:1  
The three dorsal ocelli of worker honeybees have been studied by light and electron microscopy. Each ocellus has a single flattened spheroidal lens and about 800 elongated retinular cells. Retinular cells are paired and form a two-part plate-like rhabdom between their distal processes. Each rhabdomere comprises parallel microvilli projecting laterally from the apposed retinular cells. Primary receptor cell axons synapse within the ocellus with ocellar nerve fibers of two different calibers. Each ocellus has eight thick fibers ca 10 m?m in diameter and several thinner ones less than 3 m?m in diameter. Fine structural evidence suggests that retinular axons end presynaptically on both types of ocellar nerve fibers. Since all retinular cells apparently synapse repeatedly with the thick fibers this involves a convergence of about 100:1. Thick fibers always terminate postsynaptically within the ocellus while thin fibers terminate presynaptically on other thin fibers, thick fibers or retinular axons. Structural evidence for synaptic polarization indicates that retinular cells and thick fibers are afferent, thin fibers efferent. Thus complex processing of the ocellar visual input can occur before the secondary neurons of the three ocelli converge to form the single short ocellar nerve which runs to the posterior forebrain.  相似文献   

5.
In these studies a constant ERG response was used as a measure of visual sensitivity to different wavelengths of light. The dark-adapted compound eye of Tenodera sinensis is dominated by a single class of photoreceptors. with a major peak of sensitivity at about 510–520 nm, and with a minor peak of sensitivity in the near-ultraviolet region at about 370 nm. The dark-adapted dorsal ocellus does not contain a homogeneous population of sensory receptors. The sensitivity function of the dark-adapted ocellus to longer wavelength light (yellow and red) is determined by a single receptor with a major peak of sensitivity in the green at 510–520 nm with some sensitivity in the near-ultraviolet. Sensitivity at shorter wavelengths (near-ultraviolet and blue), however, involves the stimulation of both this and a near-ultraviolet-sensitive receptor with a maximum sensitivity at about 370 nm. Anatomically, the sensory cells of the dorsal ocellus of Tenodera were determined histologically to be grouped into two distinct regions, each group making its own separate contribution to the ocellar nerve. This may represent the separation of two different photoreceptor types in the ocellus of the mantis.  相似文献   

6.
Summary The central projections of ocellar interneurones in two species of trichopterous insects Agrypnia varia F. and Limnephilus flavicornis F. were analysed by use of cobalt iontophoresis. The interneurones were classified into three groups: large-, medium- and small-caliber neurones based on the diameters of the axons. Seven large-diameter neurones project from each lateral ocellus into the central nervous system. Of these, four neurones terminate in the posterior slope (three ipsilateral and one contralateral). Three neurones possess branches in the contralateral posterior slope and proceed down the cervical connective into the thoracic ganglia. Medium-sized neurones connect the neuropiles of the three ocelli to each other. Small-diameter neurones contact the contralateral lobula and medulla of the optic lobes and connect the three ocellar neuropiles. Large-diameter neurones of the median ocellus were found to terminate bilaterally or ipsilaterally in the posterior slope. In the posterior slope four different subregions can be recognised: (1) the dorso-lateral, (2) the ventro-lateral, (3) the lateral, into which large-diameter interneurones of the lateral ocelli send branches, and (4) the medial, innervated by interneurones of the median ocellus. Interneurones of the median ocellus send branches into the lateral region as well.  相似文献   

7.
The ultrastructural localization of the enzyme acetylcholinesterase (AChE) in the ocellus of the honey bee (Apis mellifica) was studied by electron microscopy. High AChE activity was found both in the receptor-cell axons and in the surrounding glial cells. Second order neurones exhibited a remarkably lower anzyme activity. AChE was also detected in the intercellular spaces between the receptor-cell axons and the second order neurones. These results provide additional support to the assumed cholinergic nature of the photoreceptor cells in the insect ocellus.  相似文献   

8.
Summary A study of the organisation of the locust dorsal ocellus shows that the structure is designed to provide the maximum possible effective aperture. The condenser-like cuticular lens and the dispersal of the rhabdome over a large proportion of the circumferential area of the retinula cells increases the light gathering power of the eye. The synaptic plexus of the ocellus has two major features: (i) the retinula cells are repeatedly and reciprocally connected by synapses and junctions, and (ii) there is an extensive lateral and feedback network between the receptors and interneurons. A unified structure is described for a synapse that presents differing profiles dependent upon the angle of section. A distinct morphological class of junction is described between retinula cells. The synaptic arrangements of morphologically identical retinula cells vary from cell to cell and the synaptic plexus is not organised with a high degree of spatial precision. The overall synaptic configurations are discussed in terms of the varied response characteristics of units in the ocellar nerve.  相似文献   

9.
Organization of afferent information into parallel ON and OFF pathways is a critical feature of the vertebrate visual system. All afferent visual information in the vertebrate retina reaches the inner plexiform layer (IPL) via bipolar cells. It is at the bipolar cell level that separation of ON and OFF information first appears for afferent information from cones. This may also hold true for the rod pathway of cold-blooded vertebrates, but not for mammals. The all-rod retina of the skate presents an opportunity to examine such pathways in a retina having but a single class of photoreceptor. Immunocytochemical evidence suggests that both ON and OFF bipolar cells are present in the skate retina. We examined the pharmacology of the skate electroretinogram (ERG) to test the hypothesis that independent ON and OFF bipolar cell pathways are functional as rod afferent pathways from outer to inner plexiform layer in the skate. 100 microM 2-amino-4-phosphonobutyric acid (APB) reversibly blocked the skate ERG b-wave. A small d-wave-like OFF component of the ERG revealed by DC recording of response to a prolonged (10 s) flash of light was reduced or blocked by 5 mM kynurenic acid (KYN). We found that addition of 200 microM picrotoxin to the Ringer''s solution revealed prominent ON and OFF components of the skate ERG while reducing the c-wave. These ON and OFF components were reversibly blocked by 100 microM APB and 5 mM KYN, respectively. Reversible block of the OFF component by KYN was also accomplished in the presence of 500 microM N-methyl-DL-aspartate. From these findings, we conclude that ON and OFF bipolar cells are likely to be functional as parallel afferent interplexiform pathways in the all-rod retina of the skate.  相似文献   

10.
Dynamics of cockroach ocellar neurons   总被引:7,自引:6,他引:1       下载免费PDF全文
The incremental responses from the second-order neurons of the ocellus of the cockroach, Periplaneta americana, have been measured. The stimulus was a white-noise-modulated light with various mean illuminances. The kernels, obtained by cross-correlating the white-noise input against the resulting response, provided a measure of incremental sensitivity as well as of response dynamics. We found that the incremental sensitivity of the second-order neurons was an exact Weber-Fechner function; white-noise-evoked responses from second-order neurons were linear; the dynamics of second-order neurons remain unchanged over a mean illuminance range of 4 log units; the small nonlinearity in the response of the second-order neuron was a simple amplitude compression; and the correlation between the white-noise input and spike discharges of the second-order neurons produced a first-order kernel similar to that of the cell's slow potential. We conclude that signal processing in the cockroach ocellus is simple but different from that in other visual systems, including vertebrate retinas and insect compound eyes, in which the system's dynamics depend on the mean illuminance.  相似文献   

11.
Electrical responses (ERG) to light flashes of various wavelengths and energies were obtained from the dorsal median ocellus and lateral compound eye of Limulus under dark and chromatic light adaptation. Spectral mechanisms were studied by analyzing (a) response waveforms, e.g. response area, rise, and fall times as functions of amplitude, (b) slopes of amplitude-energy functions, and (c) spectral sensitivity functions obtained by the criterion amplitude method. The data for a single spectral mechanism in the lateral eye are (a) response waveforms independent of wavelength, (b) same slope for response-energy functions at all wavelengths, (c) a spectral sensitivity function with a single maximum near 520 mµ, and (d) spectral sensitivity invariance in chromatic adaptation experiments. The data for two spectral mechanisms in the median ocellus are (a) two waveform characteristics depending on wavelength, (b) slopes of response-energy functions steeper for short than for long wavelengths, (c) two spectral sensitivity peaks (360 and 530–535 mµ) when dark-adapted, and (d) selective depression of either spectral sensitivity peak by appropriate chromatic adaptation. The ocellus is 200–320 times more sensitive to UV than to visible light. Both UV and green spectral sensitivity curves agree with Dartnall's nomogram. The hypothesis is favored that the ocellus contains two visual pigments each in a different type of receptor, rather than (a) various absorption bands of a single visual pigment, (b) single visual pigment and a chromatic mask, or (c) fluorescence. With long duration light stimuli a steady-state level followed the transient peak in the ERG from both types of eyes.  相似文献   

12.
Various drosophila mutants were used to dissect the electroretinogram (ERG) frequency response into components of different origins. The ommochrome granules in the receptor cell body are known to migrate in response to light, limiting the amount of light entering the rhabdomere. Comparison between the ERG frequency responses of the wild type and the mutant lacking the ommochrome granules indicates that the pigment migration reduces the amplitude gain at frequencies below 0.5 Hz. The ERG of drosophila compound eyes consists of contributions from receptor cells and the second-order cells in the lamina. Mutants with defective laminae showed a high-frequency cutoff with a corner frequency of about 20 Hz, while in wild type the response peaked in that frequency region. These results suggest that the lamina contributes mainly to the high-frequency components of the ERG transfer function. The shot noise model (Dodge et al., 1968) has been tested in drosophila by comparing the frequency response of the superimposed on the intracellular receptor potential. The results are consistent with the hypothesis that the receptor potential consists of a summation of small discrete potentials (bumps). In a mutant in which the bumps exhibit latency dispersion in response to a dim flash, the receptor showed a poor high-frequency response, the corner frequency being lowered to about 1-2 Hz. The slope of the cutoff was approximately 20 dB/dec indicating that the latency dispersion in this mutant is the major limiting factor in temporal resolution. Light-evoked high frequency oscillations have been observed in the ERG of another mutant. The oscillation was found sharply turned to light flickering at about 55 Hz.  相似文献   

13.
Summary The distribution of FMRFamide immunoreactive neurones in the ventral nerve cord of the locust, Schistocerca gregaria, is described. These neurones are found only in the suboesophagael and thoracic ganglia, although immunoreactive processes are found in the neuropils of the abdominal ganglia. Many of these neurones also react with an antiserum raised against bovine pancreatic polypeptide (BPP), but this antiserum also reveals another population of cells in the abdominal ganglia. The staining obtained with the BPP antiserum is blocked by preabsorption of the antiserum with FMRFamide; the converse is not true: FMRFamide-like immunoreactivity is not suppressed by preincubation with BPP. These results suggest that there are at least two endogenous peptide antigens in the locust nerve cord: one is found in cells of the suboesophageal and thoracic ganglia, and the other is found in cells of the abdominal ganglia.  相似文献   

14.
1. Ontogenesis of the electroretinogram, the mass electrical response of the retina to flash light stimuli, was studied in the guinea pig (Cavia porcellus), a precocial species with visual function at birth. 2. a-Wave components, b-wave, oscillatory potentials, slow PIII, and c-wave responses to flash stimuli developed between 55 and 64 days of gestation (full term is 68-69 days). 3. a-Waves attributable to photoreceptor functions were fully mature at 60 days. 4. ERG development lagged behind the reported critical milestones in retinal development; its prenatal onset indicates that no history of light entrainment is required for initiation of a mature ERG response.  相似文献   

15.
An electroretinogram (ERG), evoked by light stimuli, was recorded from ocelli of Polyorchis penicillatus (Hydromedusae). The ERG is a polyphasic response with a positive potential change at the onset of illumination followed by a slower biphasic pulse, and a positive deflection at the cessation of illumination which is followed by a series of high-frequency pulses. The most striking features of the initial pulse are its latency-log intensity relation and the gradation of pulse amplitude with respect to the intensity of the light stimulus and to different wavelengths. Maximum spectral sensitivity lies around 530 nm. Response patterns induced by shadowing and repeated stimulation of light- and dark-adapted ocelli are described. Morphological structures which could give rise to the mass response of the ocellus are discussed.  相似文献   

16.
Summary Campaniform sensilla on the trochanter of the mesothoracic legs of the locust were backfilled with cobalt salts or horseradish peroxidase for light and electron microscopy. The distribution of the terminal branches of afferent neurones in the thoracic ganglia were described from wholemount preparations and from thick slices through the ganglia. Ultrathin sections of identified branches were processed with GABA antibodies using a post-embedding immunogold technique and examined in the electron microscope. Input synapses were observed on fine varicose branches in all regions of the terminal arborisations close to the sites of afferent output. The major branches neither make nor receive synapses. Seventy-two percent of the input synapses are made by processes immunoreactive for GABA. Immunoreactive and non-immunoreactive processes synapse onto afferent terminals in close proximity. In some instances GABA-immunoreactive processes presynaptic to an afferent are also presynaptic to a non-immunoreactive presynaptic processes strongly suggesting that different presynaptic influences can interact directly with each other.  相似文献   

17.
The spectral sensitivities of the dorsal ocelli of cockroaches (Periplaneta americana, Blaberus craniifer) and worker honeybees (Apis mellifera) have been measured by electrophysiological methods. The relative numbers of quanta necessary to produce a constant size electrical response in the ocellus were measured at various wave lengths between 302 and 623 mµ. The wave form of the electrical response (ERG) of the dark-adapted roach ocellus depends on the intensity but not the wave length of the stimulating light. The roach ocellus appears to possess a single photoreceptor type, maximally sensitive about 500 mµ. The ERG's of bee ocelli are qualitatively different in the ultraviolet and visible regions of the spectrum. The bee ocellus has two types of photoreceptor, maximally sensitive at 490 mµ and at about 335 to 340 mµ. The spectral absorption of the ocellar cornea of Blaberus craniifer was measured. There is no significant absorption between 350 and 700 mµ.  相似文献   

18.
The lateral ocelli of the dobsonfly (Protohermes grandis, Neuroptera) larva have been examined with light and electron microscopy. The larva has six ocelli on both sides of the head, each containing a single corneal lens. A conical crystalline body, of some 10–20 cells is situated immediately posterior to the lens. From 100 to 300 elongated retinular cells are arranged perpendicular to the crystalline body except at the innermost surface of the lens, where they are absent. The distal process of each retinular cell is enclosed by a tube-like rhabdom formed by the close association of microvilli from the same and adjacent distal processes. The distal process contains many mitochondria, multivesicular bodies, microtubles and pigment granules. In the dark-adapted ocellus the pigment granules are concentrated near the nucleus which lies under the rhabdomic layer. The granules diffuse toward the rhabdomic microvilli during light adaptation. Each retinular cell has a single axon, which extends from the ocellus as an ocellar nerve fiber into the optic lobe, where it frequently synapses upon second order neurons. In addition to these afferent synapses, there are two other synaptic combinations: (1) a feedback synapse from a second order neuron to a retinular axon, and (2) a synapse between second order neurons. These results suggest that photic signals reach the more proximal part of the brain via second order neurons after some degree of integration in the optic lobe.  相似文献   

19.
Summary Movements of the femoro-tibial joint of a locust hind leg are monitored by three classes of proprioceptors; a chordotonal organ (Usherwood et al. 1968), multipolar joint receptors (Coillot and Boistel 1968) and a strand receptor innervated by a single afferent with a central cell body (Bräunig 1985). All three classes are excited by imposed or voluntary extension of the tibia. The strand receptor (fe-tiSR) spikes tonically and at a frequency dependent upon the position of the joint whilst the multipolar joint receptors give overlapping information but for a more restricted range. The afferent from the strand receptor makes an excitatory connection with a spiking local interneurone in the midline group of the metathoracic ganglion. The central latency and consistency with which the EPSP follows each sensory spike suggests that the connection is direct. This interneurone also receives convergent inputs from neurones in the chordotonal organ, but not from multipolar joint receptors. Neither the strand receptor nor the multipolar joint receptors apparently synapse upon leg motor neurones that we have tested, in contrast to receptors in the chordotonal organ.  相似文献   

20.
I Kiss 《Malacologia》1979,18(1-2):489-497
The properties of 2 giant electrically coupled neurones (A10 and P1) identified in the visceral and right parietal ganglia of Lymnaea stagnalis were examined. The active and passive electrical parameters of the neurones, as well as the junction between them were measured. The main peripheral and interneuronal connections of the neurones were demonstrated using both electrophysiological and morphological methods. It is shown that the coupled cells are not neurones of the same function, but they are asymmetrical ones. This finding is supported by the following results: (1) the axonal pathways of neurones A10 and P1 are different; (2) there are significant differences in their afferent and efferent connections; (3) though the electrical junction between them is bidirectional, the junctional electrical characteristics prefer P1-A10 transmission. According to the electron microscopic results both neurones are possible neurosecretory cells. The differences demonstrated between the 2 giant neurones may have significance concerning their role in a special neuronal network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号