首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gustatory stimuli to the antennae, especially sucrose, are important for bees and are employed in learning paradigms as unconditioned stimulus. The present study identified primary antennal gustatory projections in the bee brain and determined the impact of stimulation of the antennal tip on antennal muscle activity and its plasticity. Central projections of antennal taste hairs contained axons of two morphologies projecting into the dorsal lobe, which is also the antennal motor centre. Putative mechanosensory axons arborised in a dorso-lateral area. Putative gustatory axons projected to a ventro-medial area. Bees scan gustatory and mechanical stimuli with their antennae using variable strategies but sensory input to the motor system has not been investigated in detail. Mechanical, gustatory, and electrical stimulation of the ipsilateral antennal tip were found to evoke short-latency responses in an antennal muscle, the fast flagellum flexor. Contralateral gustatory stimulation induced smaller responses with longer latency. The activity of the fast flagellum flexor was conditioned operantly by pairing high muscle activity with ipsilateral antennal sucrose stimulation. A proboscis reward was unnecessary for learning. With contralateral antennal sucrose stimulation, conditioning was unsuccessful. Thus, muscle activity induced by gustatory stimulation was important for learning success and conditioning was side-specific.  相似文献   

2.
Deutocerebral projection neurones in the brain of the cricket (Gryllus bimaculatus) have been investigated by experimental dextran staining, viewed by light and electron microscopy. These neurones of two separate somata clusters innervate two separate primary glomerular neuropils of the deutocerebral segment, either the antennal lobe receiving only antennal nerve sensory input, or the glomerular lobe, receiving input from sensory neurones of lower segmental origin, including chemosensory fibres from mouth parts. Projection neurones of the antennal lobe only invade the anterior calyx of the mushroom body neuropil via the inner antenno glomerular tract, while glomerular relay neurones of the glomerular lobe innervate only the posterior calyx via the tritocerebral tract. All types of projection neurones give rise to presynaptic boutons. forming the central core of microglomeruli with patterned distribution. These projection neurons are cholinergic. The results are discussed in view of maintained segregated modal information, first processed in the separated primary deutocerebral neuropiles and further on in the second order input neuropils of the mushroom bodies. The large posterior calyces are proposed as a compartment for gustatory information.  相似文献   

3.
Electrical activities of the olfactory neurones in the brain of the honeybee were investigated. Odorous stimuli were given to each antenna separately or to both simultaneously. The inputs from the antennae affected both the impulse frequency and the latency of the olfactory interneurones in the protocerebrum. The predominant response was to the stimulation of the ipsilateral antenna. Input from the contralateral antenna produced mainly excitatory effects, although a few inputs gave inhibitory effects. No particular relationships between the loci of the units in the brain and the types of responses produced were found. Most of the units were located in the protocerebral lobe and in the central commissure. The units in the deutocerebrum responded only to the stimulation of the ipsilateral antenna, and the magnitude of response and the latency were not different with respect to unilateral or bilateral stimulation of the antennae. Differences in latency between unilateral and bilateral stimulation were observed in some of the units in the protocerebrum. Neural models which explain these phenomena are postulated.  相似文献   

4.
Honey bees are a key-model in the study of learning and memory, because they show considerable learning abilities, their brain is well described and is accessible to a wide range of physiological recordings and treatments. We use in vivo calcium imaging to study olfactory perception in the bee brain, and combine this method to appetitive olfactory conditioning to unravel the neural substrates of olfactory learning. Odours are detected by receptor neurons on the antennae. Each receptor neuron projects to the first-order neuropile of the olfactory pathway, the antennal lobe, connecting to projection neurons in one of its 160 functional units, the glomeruli. In calcium imaging experiments, each odour elicits a particular activity pattern of antennal lobe glomeruli, according to a code conserved between individuals. The antennal lobe is also a site where the olfactory memory is formed. Using optical imaging, two studies have shown modulations of odour representation in the antennal lobe after learning, with different effects depending on the type of conditioning used. While simple differential conditioning (A + B- training) showed an increased calcium response to the reinforced odour, side-specific conditioning (A + B-/B + A- training) decorrelated the calcium responses of odours between brain sides. This difference may owe to the formation of different memories, which will be addressed in future work. By specifically staining antennal lobe neuronal subpopulations, we hope to be able in the future to study synaptic plasticity in the honey bee.  相似文献   

5.
Ueda  S.  Kawata  M.  Sano  Y. 《Cell and tissue research》1983,234(2):237-248
Summary Cobalt fills from small, defined regions of the antenna in D. melanogaster show that the three types of sensilla on the third segment, the flagellum, and a fourth sensillum located in the arista, project into the glomeruli of the antennal lobe. We have identified 19 glomeruli in each lobe, according to their location, shape, and size. At least ten of these represent major projection areas of flagellar or aristal sensilla. The large majority of glomeruli is innervated from both antennae, but a small group of five receive exclusively ipsilateral input. A particular sensory fiber appears to terminate only in one specific glomerulus, either in the ipsilateral or in both lobes. Fills from flagellar regions bearing a single type of sensillum, yield a specific pattern of glomeruli containing stained terminals. Aristal projections remain strictly ipsilateral, whereas those from the other sensilla consist of an ipsilateral and a bilateral component. When filling from different points in an area bearing one type of sensillum, similar projections are produced, suggesting that projection patterns observed reflect predominantly the type of sensillum rather than its location on the flagellum. Accordingly, individual glomeruli might represent functional units, each receiving antennal input in a characteristic combination.We are indebted to Dr. H. Tobler for critical comments. R.F.S. was supported by the Swiss National Foundation (Grant No. 3.541-0.79) as well as a Travel Aid by the Swiss Academy of Sciences  相似文献   

6.
【目的】鉴定雄性棉铃虫Helicoverpa armigera成虫触角性信息素感器嗅觉受体神经元的功能、形态及中枢投射路径。【方法】利用单感器记录技术记录棉铃虫嗅觉受体神经元对性信息素的反应,同时采用荧光染料作为示踪剂染色标记嗅觉受体神经元;使用免疫组织化学方法处理相应的脑组织,标记脑内触角叶的神经纤维球结构;用激光扫描共聚焦显微镜获取图像数据,使用图形软件ZEN和Amira 4.1.1进行三维结构重建。【结果】记录到雄性棉铃虫成虫触角上长毛形感器对主要性信息素成分Z11-16∶Ald产生明显的电生理反应,并成功染色标记了该感器内的嗅觉受体神经元。染色标记显示该感器内具有两个嗅觉受体神经元,其轴突通过触角神经分别投射触角叶内的云状体神经纤维球和普通神经纤维球。【结论】单感器记录与神经元示踪两技术结合能够用于鉴定昆虫触角嗅觉受体神经元的功能、形态和投射至神经纤维球的路径。与赖氨酸钴方法比较,使用荧光染料法进行神经元示踪,操作更简便,且易于进行三维空间分析,为调查棉铃虫其他嗅觉神经元的投射路径以明确外周气味受体感受与中枢系统的联系提供了有力技术支持。  相似文献   

7.
Here we describe the antennal lobe of Libellula depressa (Odonata, Libellulidae), identified on the basis of the projections of the afferent sensory neurons stemming from the antennal flagellum sensilla. Immunohistochemical neuropil staining as well as antennal backfills revealed sensory neuron terminal arborizations covering a large portion of the antennal lobe. No clear glomerular structure was identified, thus suggesting an aglomerular antennal lobe condition as previously reported in Palaeoptera. The terminal arbors of backfilled sensory neurons do, however, form spherical knots, probably representing the connections between the few afferent neurons and the antennal lobe interneurons. The reconstruction revealed that the proximal part of the antennal nerve is divided into two branches that innervate two spatially separated areas of the antennal lobe, an anterioventral lobe and a larger posteriodorsal lobe. Our data are consistent with the hypothesis that one tract of the antennal nerve of L. depressa contains olfactory sensory neurons projecting into one of the sublobes, while the other tract contains thermo-hygroreceptive neurons projecting into the other sublobe.  相似文献   

8.
Left–right asymmetries are common properties of nervous systems. Although lateralized sensory processing has been well studied, information is lacking about how asymmetries are represented at the level of neural coding. Using in vivo functional imaging, we identified a population-level left–right asymmetry in the honey bee''s primary olfactory centre, the antennal lobe (AL). When both antennae were stimulated via a frontal odour source, the inter-odour distances between neural response patterns were higher in the right than in the left AL. Behavioural data correlated with the brain imaging results: bees with only their right antenna were better in discriminating a target odour in a cross-adaptation paradigm. We hypothesize that the differences in neural odour representations in the two brain sides serve to increase coding capacity by parallel processing.  相似文献   

9.
Video recordings and single frame analysis were used to study the function of the second antennae of crayfish (Cherax destructor) as a sensory system in freely behaving animals. Walking crayfish move their antennae back and forth through horizontal angles of 100 degrees and more, relative to the body long axis. At rest, animals tend to hold their antennae at angular positions between 20 and 50 degrees. Movements of the two antennae are largely independent of each other. Before and during a turn of the body the ipsilateral antenna is moved into the direction of the turn. Solid objects are explored by repeatedly moving the antennae towards and across them. Both seeing and blinded crayfish can locate stationary objects following antennal contact. On antennal contact with a small novel object, a moving animal withdraws its antenna and attacks the object. When the antenna of a blinded crayfish is lightly touched with a brush the animal turns and attacks the point of stimulation. The direction taken and the distance covered during an attack can be correlated with: the angle at which the antenna is held at the moment of contact and the distance along the antennal flagellum at which the stimulus is applied. From behavioural evidence we conclude that crayfish use information about the angular position of their antennae and about the position of stimulated mechanoreceptors along the antennal flagellum to locate objects in their environment. We suggest ways in which an active tactile system-like the crayfish's antennae--could supply animals with information about the three-dimensional layout of their environment.  相似文献   

10.
Summary The morphological features of descending interneurons that responded to the artificial bending of statolith hairs were assessed with intracellular recording and staining techniques. Seven statocyst interneurons were identified on the basis of their structure and response characteristics and designated as interneurons S1 to S7. All seven identified interneurons project to the optic lobe, where the optic nerve also projects, and to the dorsal part of the tritocerebrum, where the eyestalk motoneurons originate. All except interneuron S6 also extend their major branches to other neuropilar regions. S2 projects to the dorsal part of the deutocerebrum, where the statocyst nerve terminates, and S3 to the dorsal part of deutocerebrum and the antennal lobe. Four other interneurons (S1, S4, S5, S7) also extend their branches to the parolfactory lobe to which the statocyst nerve projects as well as to the deutocerebrum and antennal lobe. The extensive dendritic projections of S1–S7 suggest that they are complex multimodal interneurons rather than simple relay interneurons, receiving at least visual and statocyst sensory information. The function of the antennal lobe branches, however, has yet to be determined since the functional role of antennal input in equilibrium control is unknown.  相似文献   

11.
The antennal lobe was examined by Golgi-silver impregnation to differentiate the glomeruli depending on the source and types of inputs. Thirty-five of the 43 ‘identified’ olfactory glomeruli were Golgi-silver impregnated in the present study. Seven glomeruli compared to three, reported previously, were found to be targets of maxillary palp chemosensory neurons. These include glomeruli VA3, VC2, VM5, VA7m/VA7l of the ventral antennal lobe and DC2, DC3, DM5 of the dorsal antennal lobe. The number of glomeruli receiving the maxillary palp sensory projections tallies with the number ofDrosophila olfactory receptors (seven) reported to be expressed exclusively in the maxillary palp. Twenty-eight Golgi-impregnated glomeruli were found to receive input from the antennal nerve. The ratio of glomeruli serving the maxillary palp to those serving the antenna (∼1:5) matches with the ratio ofDrosophila olfactory receptors expressed in these two olfactory organs respectively. In addition to glomerulus V, glomeruli VP1-3, VL1, VL2a/2p and VC3m/3l were found to receive ipsilateral projections. Thus, additional ipsilateral glomeruli have been identified.  相似文献   

12.
The signals that olfactory receptor axons use to navigate to their target in the CNS are still not well understood. In the moth Manduca sexta, the primary olfactory pathway develops postembryonically, and the receptor axons navigate from an experimentally accessible sensory epithelium to the brain along a pathway long enough for detailed study of regions in which axon behavior changes. The current experiments ask whether diffusible factors contribute to receptor axon guidance. Explants were made from the antennal receptor epithelium and co-cultured in a collagen gel matrix with slices of various regions of the brain. Receptor axons were attracted toward the central regions of the brain, including the protocerebrum and antennal lobe. Receptor axons growing into a slice of the most proximal region of the antennal nerve, where axon sorting normally occurs, showed no directional preference. When the antennal lobe was included in the slice, the receptor axons entering the sorting region grew directly toward the antennal lobe. Taken together with the previous in vivo experiments, the current results suggest that an attractive diffusible factor can serve as one cue to direct misrouted olfactory receptor axons toward the medial regions of the brain, where local cues guide them to the antennal lobe. They also suggest that under normal circumstances, in which the receptor axons follow a pre-existing pupal nerve to the antennal lobe, the diffusible factor emanating from the lobe acts in parallel and at short range to maintain the fidelity of the path into the antennal lobe.  相似文献   

13.
Summary The serotoninergic innervation of the corpus cardiacum (CC) of Locusta migratoria was investigated using two antisera against serotonin. A dense network of immunoreactive nerve fibres was present in the storage lobe of the CC. Immunopositive fibres only sporadically crossed the border between the storage lobe and the glandular lobe of the CC. Immunopositive fibres entered the storage lobe of the CC via the nervus corporis cardiaci I (NCCI); NCCII was immunonegative. Unilateral retrograde fillings of the NCCI with the fluorescent tracer Lucifer yellow, followed by antiserotonin immunocytochemistry, revealed about 20 double-labelled neurones in the anterior part of the pars intercerebralis. The double-labelled neurones were scattered between fluorescent non-immunoreactive neurones. Additionally, 5–7 neurones labelled only with Lucifer yellow were found at the ventrolateral side of the tritocerebrum. No immunopositive neurones were observed in the hypocerebral ganglion. Immunopositive fibres from neurones in the frontal ganglion ran via the recurrent nerve and the neuropile of the hypocerebral ganglion into the paired oesophageal nerve. At most, a few immunopositive nerve fibres occurred in the cardiostomatogastric nerves II, which connect the storage lobe of the CC with the paired oesophageal nerve at the caudal end of the hypocerebral ganglion.  相似文献   

14.
Central projections of sensory neurons from homeotic mutant appendages (Antennapedia) of Drosophila melanogaster were compared with those of wild-type antennae and wild-type legs by means of degeneration and cobalt backfilling methods. Sensory axons originating from wild-type thoracic legs terminate within the ventral ipsilateral half of the corresponding neuropile segment and do not project to the brain. Sensory fibers from the third antennal segment (AIII) of wild-type animals project into the ipsilateral antennal glomerulus (AG) and to a lesser extent into the contralateral AG, whereas those from the second antennal segment terminate principally within the ipsilateral posterior antennal center. The sensory terminals of femur, tibia, and tarsi of the homeotic leg show a distribution very similar to that of the homologous wild-type antennal segment AIII, differing to a minor degree only in the size and precise localization of terminals within the antennal glomeruli. No degenerating axons were evident in ultrastructural examination of neck connectives after removal of homeotic legs. It is thus very improbable that any sensory fibers of the homeotic leg project to normal leg projection areas in the thoracico-abdominal ganglion. Several alternative explanations are offered for the apparent retention of antennal specificity by axons from the transformed appendage.  相似文献   

15.
Antennae are one of the major organs to detect chemo- and mechanosensory cue in crickets. Little is known how crickets process and integrate different modality of information in the brain. We thus used a number of different anatomical techniques to gain an understanding of the neural pathways extending from the antennal sensory neurons up to centers in the brain. We identified seven antennal sensory tracts (assigned as T1?C7) utilizing anterograde dye filling from the antennal nerve. Tracts T1?CT4 project into the antennal lobe (AL), while tracts T5 and T6 course into the dorsal region of the deutocerebrum or the suboesophageal ganglion, and finally, tract T7 terminates in the ventral area of flagellar afferent (VFA). By analyzing autofluorescence images of the AL, we identified 49 sexually isomorphic glomeruli on the basis of shape, relative position and size. On the basis of our sensory-tract data, we assigned the glomeruli into one of four separate groups. We then three-dimensionally reconstructed the internal structures in the AL (glomeruli) and the VFA (layers). Next in the protocerebrum, we identified both the tracts and their terminations from the AL and VFA. We found that 10 tracts originate in the AL, whereas there are at least eight tracts from the VFA. Several tracts from the AL share their routes with those from the VFA, but their termination areas are segregated. We now have a better anatomical understanding of the pathways for the antennal information in cricket.  相似文献   

16.
Neuronal architecture of the antennal lobe in Drosophila melanogaster   总被引:4,自引:0,他引:4  
Summary Computer reconstruction of the antennal lobe of Drosophila melanogaster has revealed a total of 35 glomeruli, of which 30 are located in the periphery of the lobe and 5 in its center. Several prominent glomeruli are recognizable by their location, size, and shape; others are identifiable only by their positions relative to prominent glomeruli. No obvious sexual dimorphism of the glomerular architecture was observed. Golgi impregnations revealed: (1) Five of the glomeruli are exclusive targets for ipsilateral antennal input, whereas all others receive afferents from both antennae. Unilateral amputation of the third antennal segment led to a loss of about 1000 fibers in the antennal commissure. Hence, about 5/6 of the approximately 1200 antennal afferents per side have a process that extends into the contralateral lobe. (2) Afferents from maxillary palps (most likely from basiconic sensilla) project into both ipsi-and contralateral antennal lobes, yet their target glomeruli are apparently not the same as those of antennal basiconic sensilla. (3) Afferents in the antennal lobe may also stem from pharyngeal sensilla. (4) The most prominent types of interneurons with arborizations in the antennal lobe are: (i) local interneurons ramifying in the entire lobe, (ii) unilateral relay interneurons that extend from single glomeruli into the calyx and the lateral protocerebrum (LPR), (iii) unilateral interneurons that connect several glomeruli with the LPR only, (iv) bilateral interneurons that link a small number of glomeruli in both antennal lobes with the calyx and LPR, (v) giant bilateral interneurons characterized by extensive ramifications in both antennal lobes and the posterior brain and a cell body situated in the midline of the suboesophageal ganglion, and (vi) a unilateral interneuron with extensive arborization in one antennal lobe and the posterior brain and a process that extends into the thorax. These structural results are discussed in the context of the available functional and behavioral data.Abbreviations AC antennal commissure - AMMC antennal mechanosensory and motor center - iACT, mACT, oACT inner/middle/outer antenno-cerebral tract - bACTI, uACTI bilateral/unilateral ACT relay interneuron - AN antennal nerve - AST antenno-suboesophageal tract - FAI fine arborization relay interneuron - GSI giant symmetric relay interneuron - LI local interneuron - LPR lateral protocerebrum - SOG suboesophageal ganglion - TI thoracic relay interneuron - bVI bilateral V-relay interneuron  相似文献   

17.
Male moths respond to sex pheromone sources with up-wind flight behaviour. Localization of the odour source requires not only detection of the olfactory stimulus, but also other sensory input regarding, e.g. visual and mechanical stimuli. Thus, integration of different types of sensory input is necessary. It is, however, not known where in the central nervous system the integration of information regarding different sensory modalities takes place. Using intracellular recording and staining techniques, we investigated neurons in the antennal lobe of Spodoptera littoralis, during stimulation with a mechanical stimulus and a sex pheromone. Fifteen percent of all the neurons investigated responded to the mechanical stimulus and the majority of these neurons showed altered responses if the olfactory stimulus was added. A receptor neuron responding only to the wind stimulus was found to arborise in the antennal lobe. Most projection neurons responded with an enhanced action potential frequency to the combined stimulus. In local interneurons, enhancement, depression, or no change of the responses to the wind stimulus was found when the olfactory stimulus was added. The results suggest that neurons present in the antennal lobe integrate mechanosensory and olfactory input, possibly assisting the moths to orient during up-wind flight towards an odour source.  相似文献   

18.
Three types of hairs were identified on the maxillary palp of Drosophila melanogaster Meigen (Diptera : Drosophilidae): (i) single-walled, multiporous sensilla basiconica, which constitute 75% of the innervated hairs; (ii) thick walled non-porous sensilla trichodea, which make up the remaining 25% of the innervated hairs; and (iii) numerous spinules, which are un-innervated. These sensilla basiconica uniformly contain 2 bipolar sense cells, whereas sensilla trichodea have a single dendrite with a tubular body at the base of each hair. A majority of the sensilla basiconica is located on the distal half of the dorsal surface, whereas sensilla trichodea are positioned on the tip and entire ventrolateral ridge of the palp. Approximately 125 axons of the sense cells join to form a single nerve. The structure of sensilla basiconica and sensilla trichodea suggests that they are olfactory and mechanosensory respectively. The contact chemoreceptors (gustatory sensilla) are conspicuously absent on the maxillary palp.Golgi silver impregnations and cobalt fills show that the primary sensory fibres from sensilla trichodea and sensilla basiconica on the maxillary palp project in the posterior suboesophageal ganglion (SOG) and the antennal lobe respectively. A single fibre projects separately either in the SOG or in the antennal lobe. In the antennal lobe, the input received from sensilla basiconica is usually bilateral and at least 5 glomeruli are innervated symmetrically on either side from both the palps.This study suggests that the sensory neurons are capable of making selective projections in the specific regions of the brain. Accordingly, the fibres from a sensillum project to the brain with respect to their functions and the individual glomeruli represent functional units of the brain, receiving inputs in a characteristic combination.  相似文献   

19.
Two large interneurons in the crayfish brain which are sensitive to vibrational stimuli were injected with the fluorescent dye Procion Yellow. The dendritic branching profiles reflect the directional sensitivity of their respective mechanoreceptive fields on the cephalic appendages and integument. One interneuron branches exclusively on the contralateral side of the brain and receives monosynaptic input from the contralateral antenna; the second interneuron branches primarily on the ipsilateral side and is more sensitive to input from ipsilateral receptors although its receptive field is bilateral. The data suggest that these cells are primary and secondary sensory interneurons, respectively.  相似文献   

20.
Like several other arthropod species, stick insects use their antennae for tactile exploration of the near-range environment and for spatial localisation of touched objects. More specifically, Carausius morosus continuously moves its antennae during locomotion and reliably responds to antennal contact events with directed movements of a front leg. Here we investigate the afferent projection patterns of antennal hair fields (aHF), proprioceptors known to encode antennal posture and movement, and to be involved in antennal movement control. We show that afferents of all seven aHF of C. morosus have terminal arborisations in the dorsal lobe (DL) of the cerebral (=supraoesophageal) ganglion, and descending collaterals that terminate in a characteristic part of the gnathal (=suboesophageal) ganglion. Despite differences of functional roles among aHF, terminal arborisation patterns show no topological arrangement according to segment specificity or direction of movement. In the DL, antennal motoneuron neurites show arborizations in proximity to aHF afferent terminals. Despite the morphological similarity of single mechanoreceptors of aHF and adjacent tactile hairs on the pedicel and flagellum, we find a clear separation of proprioceptive and exteroceptive mechanosensory neuropils in the cerebral ganglion. Moreover, we also find this functional separation in the gnathal ganglion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号