首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The Escherichia coli Lon protease degrades the E. coli DNA-binding protein HUβ, but not the related protein HUα. Here we show that the Lon protease binds to both HUβ and HUα, but selectively degrades only HUβ in the presence of ATP. Mass spectrometry of HUβ peptide fragments revealed that region K18-G22 is the preferred cleavage site, followed in preference by L36-K37. The preferred cleavage site was further refined to A20-A21 by constructing and testing mutant proteins; Lon degraded HUβ-A20Q and HUβ-A20D more slowly than HUβ. We used optical tweezers to measure the rupture force between HU proteins and Lon; HUα, HUβ, and HUβ-A20D can bind to Lon, and in the presence of ATP, the rupture force between each of these proteins and Lon became weaker. Our results support a mechanism of Lon protease cleavage of HU proteins in at least three stages: binding of Lon with the HU protein (HUβ, HUα, or HUβ-A20D); hydrolysis of ATP by Lon to provide energy to loosen the binding to the HU protein and to allow an induced-fit conformational change; and specific cleavage of only HUβ.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
The E. coli cls open reading frame (ORF) predicts a 54.8 kDa polypeptide, whereas mature cardiolipin (CL) synthase is 46 kDa. The N-terminal region extending to residue 60 contains several conserved residues but is not essential for enzyme activity. A deletion mutant that is missing residues 2-60 produces a fully active protein. These findings raise the question of why several residues in a region that is not required for enzyme activity are conserved. Recombinant DNA technology was used to introduce an EYMPE epitope (EE) tag into the interior of CL synthase. The EE tagged polypeptide retained the biological properties of wild type CL synthase, including full enzymatic activity. Site-directed mutagenesis was used to alter conserved residues in the N-terminal region. An EE tagged CL synthase in which Leu-7 and Val-8 were both replaced by Ser residues retains in vitro activity but loses most of its in vivo activity. Furthermore, the mutant protein has a higher apparent molecular mass than its parent protein. Taken together, these findings suggest that conserved residues L7 and V8 play a role in polypeptide processing, topology, or both.  相似文献   

11.
The outer membrane of Gram-negative bacteria is a unique asymmetric lipid bilayer composed of phospholipids (PLs) in the inner leaflet and lipopolysaccharides (LPSs) in the outer leaflet. Its function as a selective barrier is crucial for the survival of bacteria in many distinct environments, and it also renders Gram-negative bacteria more resistant to antibiotics than their Gram-positive counterparts. Here, we report the structural properties of a model of the Escherichia coli outer membrane and its interaction with outer membrane phospholipase A (OmpLA) utilizing molecular dynamics simulations. Our results reveal that given the lipid composition used here, the hydrophobic thickness of the outer membrane is ∼3 Å thinner than the corresponding PL bilayer, mainly because of the thinner LPS leaflet. Further thinning in the vicinity of OmpLA is observed due to hydrophobic matching. The particular shape of the OmpLA barrel induces various interactions between LPS and PL leaflets, resulting in asymmetric thinning around the protein. The interaction between OmpLA extracellular loops and LPS (headgroups and core oligosaccharides) stabilizes the loop conformation with reduced dynamics, which leads to secondary structure variation and loop displacement compared to that in a DLPC bilayer. In addition, we demonstrate that the LPS/PL ratios in asymmetric bilayers can be reliably estimated by the per-lipid surface area of each lipid type, and there is no statistical difference in the overall membrane structure for the outer membranes with one more or less LPS in the outer leaflet, although individual lipid properties vary slightly.  相似文献   

12.
13.
14.
Thong-Sung Ko 《Bio Systems》1975,6(4):205-208
The present paper points out lack of evidence to support the presently prevailing concept that E. coli mRNA turnover, in the gene expression process, cannot take place without mRNase(s). The present paper draws attention to possible physicochemical factors involved in the degradation, and advances a notion of non-enzymatic spontaneous degradation of E. coli mRNA in its expression process. This suggested hypothesis helps to explain hitherto reported findings on the mode of E. coli mRNA degradation.  相似文献   

15.
16.
YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration.  相似文献   

17.
18.
HAMP domains play key signaling roles in many bacterial receptor proteins. The four-helix HAMP bundle of the homodimeric Escherichia coli serine chemoreceptor (Tsr) interacts with an adjoining four-helix sensory adaptation bundle to regulate the histidine autokinase CheA bound to the cytoplasmic tip of the Tsr molecule. The adaptation helices undergo reversible covalent modifications that tune the stimulus-responsive range of the receptor: unmodified E residues promote kinase-off output, and methylated E residues or Q replacements at modification sites promote kinase-on output. We used mutationally imposed adaptational modification states and cells with various combinations of the sensory adaptation enzymes, CheR and CheB, to characterize the signaling properties of mutant Tsr receptors that had amino acid replacements in packing layer 3 of the HAMP bundle and followed in vivo CheA activity with an assay based on Förster resonance energy transfer. We found that an alanine or a serine replacement at HAMP residue I229 effectively locked Tsr output in a kinase-on state, abrogating chemotactic responses. A second amino acid replacement in the same HAMP packing layer alleviated the I229A and I229S signaling defects. Receptors with the suppressor changes alone mediated chemotaxis in adaptation-proficient cells but exhibited altered sensitivity to serine stimuli. Two of the suppressors (S255E and S255A) shifted Tsr output toward the kinase-off state, but two others (S255G and L256F) shifted output toward a kinase-on state. The alleviation of locked-on defects by on-shifted suppressors implies that Tsr-HAMP has several conformationally distinct kinase-active output states and that HAMP signaling might involve dynamic shifts over a range of bundle conformations.  相似文献   

19.
Discrimination of tRNAGln is an integral function of several bacterial glutamyl-tRNA synthetases (GluRS). The origin of the discrimination is thought to arise from unfavorable interactions between tRNAGln and the anticodon-binding domain of GluRS. From experiments on an anticodon-binding domain truncated Escherichia coli (E. coli) GluRS (catalytic domain) and a chimeric protein, constructed from the catalytic domain of E. coli GluRS and the anticodon-binding domain of E. coli glutaminyl-tRNA synthetase (GlnRS), we show that both proteins discriminate against E. coli tRNAGln. Our results demonstrate that in addition to the anticodon-binding domain, tRNAGln discriminatory elements may be present in the catalytic domain in E. coli GluRS as well.  相似文献   

20.
Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infection and engage in a coordinated genetic and molecular cascade to colonize the urinary tract. Disrupting the assembly and/or function of virulence factors and bacterial biofilms has emerged as an attractive target for the development of new therapeutic strategies to prevent and treat urinary tract infection, particularly in the era of increasing antibiotic resistance among human pathogens. UPEC vary widely in their genetic and molecular phenotypes and more data are needed to understand the features that distinguish isolates as more or less virulent and as more robust biofilm formers or poor biofilm formers. Curli are extracellular functional amyloid fibers produced by E. coli that contribute to pathogenesis and influence the host response during urinary tract infection (UTI). We have examined the production of curli and curli-associated phenotypes including biofilm formation among a specific panel of human clinical UPEC that has been studied extensively in the mouse model of UTI. Motility, curli production, and curli-associated biofilm formation attached to plastic were the most prevalent behaviors, shared by most clinical isolates. We discuss these results in the context on the previously reported behavior and phenotypes of these isolates in the murine cystitis model in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号