首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ecdysterone contact period required for pupal development of Sarcophaga wing disks was studied in vitro. When the disks were cultured in a medium with 1 × 10?6 M ecdysterone for about 21 hr, evagination of wing disks occurred independent of a later transfer into a hormone-free medium. The contact period required for wing evagination was dependent on the concentration of ecdysterone.When the disks cultured in the ecdysterone-containing medium were subjected to an intervening ecdysterone-free condition, evagination of the wing occurred if the period of the hormone contact before and after the ecdysterone-free period totalled a certain length. The total period required for wing evagination was altered both by the duration of the intervening hormone-free culture and duration of the first culture with ecdysterone.The morphogenetic effect of ecdysterone is discussed in relation to RNA synthesis in vitro.  相似文献   

2.
《Insect Biochemistry》1987,17(7):955-959
The timing and magnitude of the pupal commitment peak in the hemolymph ecdysteroid titer of fifth instar Manduca sexta larvae are controlled by the combined effects of prothoracicotropic hormone (PTTH), a prothoracic gland-stimulating factor present in the hemolymph, and the biosynthetic competence of the prothoracic glands themselves. The present data indicate those individual effects are coordinated by juvenile hormone (JH): (1) Treatment of larvae with the JH analog (7S)-hydroprene prevents the normal precommitment drop in the titer of the stimulatory factor; (2) treatment of larvae with (7S)-hydroprene suppresses in a dose- and time-dependent manner the biosynthetic competence of the prothoracic glands; and (3) (7S)-hydroprene acts directly on the brain to inhibit the release of PTTH in vitro. Thus, during Manduca development, a drop in the JH titer early in the fifth instar results in a rapid drop in the titer of the stimulatory factor, the gradual acquisition by prothoracic glands of biosynthetic competence, and lastly, the gated release of PTTH into the hemolymph. The resulting increase in ecdysone synthesis by the prothoracic glands gives rise to the small peak in the ecdysteroid titer that drives pupal commitment.  相似文献   

3.
Effects of ecdysone analogues on development and metabolic activities of Sarcophaga wing disks were studied in cultures. Development of disks was induced by ecdysterone, ponasterone A, and cyasterone in vitro, whereas rubrosterone was quite inactive in inducing development.As well as morphogenetic effects, a proper concentration (3 × 10?5 M to 3 × 10?7 M) was required to induce the incorporation of tritiated uridine, thymidine, and leucine into RNA, DNA, and protein, respectively. Higher concentration of the hormone was more favourable to development of disks and enhancement of RNA synthesis. However, the hormone at concentration higher than 2 × 10?9 M seemed to be rather toxic to both development and metabolic activity.  相似文献   

4.
In the salivary gland chromosomes of late-third instar larvae and in late (8- to 12-hr) prepupae of Drosophila melanogaster, there are ecdysone-induced sequences of puffing patterns which can be reproduced in vitro. These two sequences are separated by a period when the glands are thought to be exposed to a low titer of β-ecdysone and during which they acquire the competence to respond to ecdysone at the late prepupal puff sites. Attempts to modify either the late larval or the late prepupal responses to ecdysone in vitro by the simultaneous addition of juvenile hormone (JH) with ecdysone, to larval or prepupal glands, respectively, are unsuccessful. If, however, JH (ca. 10?6M) is added to larval glands cultured 6 hr in ecdysone and then 3 hr in JH alone, the subsequent induction of prepupal ecdysone puffs is inhibited. Thus the role of JH appears to lie in modifying the acquisition of competence to respond to ecdysone rather than in a direct antagonism between the two hormones.  相似文献   

5.
Imaginal disks of Drosophila melanogaster isolated en masse and incubated in Robb's tissue culture medium incorporate 3H-thymidine into nuclear DNA. Both α- and β-ecdysone stimulate the rate of 3H-thymidine incorporation into disk DNA. Concentrations of ecdysone that induce complete evagination of disks in vitro cause the initiation of DNA synthesis in some disk cells. Juvenile hormone has no effect on DNA synthesis in control disks. However, juvenile hormone blocks the ecdysone stimulation of DNA synthesis. It is proposed that juvenile hormone and ecdysone act in a balanced fashion to regulate DNA synthesis in imaginal disks.  相似文献   

6.
The hypothesis that the brains of young, last instar larvae of Galleria mellonella (L.) initiate supernumerary larval apolyses by secreting an ‘allatotropic factor’ was reexamined. It was confirmed that following bilateral allatectomy the larvae lose their ability to produce supernumerary instars (superlarvae) in response to implanted brains. The JH analog Altosid caused the allatectomized larvae to undergo extra apolyses irrespective of whether or not brains had been implanted. Although the percentage of superlarvae obtained following Altosid treatment was not increased by the implanted brains, the onset of extra apolyses was accelerated. This suggests that the brain can promote larval-larval apolyses without acting first on the corpora allata (CA). Presumably, it does so by producing prothoracotropic hormone.The propensity to generate new larval structures was tested by injecting ecdysterone into larvae 48 and 65 hr after they had been allatectomized. Within 48 hr after both CA had been removed the precocious apolysis resulted in individuals with antennae that were partly larval and partly pupal, and by 65 hr the ability to reproduce larval parts had diminished further. Those that were hemi-allatectomized did not demonstrate this impairment. The results were consistent with the interpretation that allatectomy abolishes the capacity to produce superlarvae because the JH titer declines to a level insufficient to permit expression of the larval genetic program during the next moulting cycle. This is offered as an alternative to the hypothesis that allatectomy prevents implanted brains from producing superlarvae because the target organs of the ‘allatotropic factor’ have been removed.An attempt was made to confirm the observation that brains from young, last instar larvae are more effective initiators of supernumerary apolyses than those from donors in the process of pupating. There was no evidence for a different endocrine function by the brain during the two stages.  相似文献   

7.
Following unilateral allatectomy in the viviparous cockroach, Diploptera punctata, the remaining corpus allatum (CA) can synthesize juvenile hormone (JH) at rates equal to that of a pair of control CA. A single CA undergoes changes in volume and cell number similar in magnitude to those occurring during the normal cycle of JH synthesis. There is no hyptertrophy of the CA associated with compensation in JH synthesis. Therefore, the rate of JH synthesis per cell or per unit volume of single CA following unilateral allatectomy is twice that of a single control CA.  相似文献   

8.
The degree of inhibition of larval-pupal ecdysis of Indian meal moths, Plodia interpunctella, by juvenile hormone (JH) treatment depended upon the dosage of hormone and time of treatment. During the last larval instar, the timing aspect operated independently of dosage and had two essential components for effectiveness, (a) early initiation of exposure and (b) maintenance of exposure. The effects of JH treatments could be reversed by removing the insects from the JH diet. In vitro tests with wing disks indicated that JH reversibly inhibited disk development only during the early part of the last larval instar, a time when disks are insensitive to β-ecdysone. After disks acquire full sensitivity to β-ecdysone, they lose their ability to respond to JH.  相似文献   

9.
Wing discs from late final-instar Ephestia larvae form only pupal cuticle when immediately implanted into pupae which subsequently undergo metamorphosis. However, either pupal or adult structures are made in vitro depending on (1) the ecdysterone dose and/or (2) disc cell proliferation. Continuous culture in ecdysterone (0.5–5.0 μg/ml) results in the appearance of transparent cuticle. On the basis of several criteria, this untanned cuticle is postulated to be scaleless adult cuticle. Discs pulsed with 0.5 μg/ml ecdysterone for 48–120 hr, or with 5.0 μg/ml for 24 hr, formed tanned cuticle. Lower doses of ecdysterone (i.e., 0.5 μg/ml for 24 hr or continuous exposure to 0.05 μg/ml) trigger adult scale formation. Enhancement of [3H]thymidine incorporation by these latter doses suggests the occurrence of disc cell divisions and polyploidization. The choice between pupal and adult pathways by wing discs of this age can be controlled exclusively by ecdysterone; juvenile hormone need not be involved in vitro.  相似文献   

10.
In the tobacco hornworm, Manduca sexta, metamorphosis occurs in response to two releases of ecdysone that occur 2 days apart. Epidermis was explanted from feeding final-instar larvae before the first release of ecdysone and was cultured in Grace's medium. When exposed to 1 μg/ml of β-ecdysone for 24 hr and then to hormone-free medium for 24 hr, followed by 5 μg/ml of β-ecdysone for 4 days, the epidermis produced tanned pupal cuticle in vitro. During the first 24 hr of exposure to β-ecdysone, the epidermis first changed its cellular commitment to that for pupal cuticle formation (ET50 = 14 hr), then later (by 22 hr) it became committed to tan that cuticle. Then, for most of the pupal cuticle to be tanned, at least a 12-hr period of culture in hormone-free medium was required before the cuticle synthesis was initiated. Consequently, some events prerequisite to sclerotization of pupal cuticle not only occur during the ecdysone-induced change in commitment but also during the ecdysone-free period. When the tissue was preincubated in 3 μg/ml of juvenile hormone (JH I or a mimic epoxygeranylsesamole) for 3 hr and then exposed to both ecdysone and juvenile hormone for 24 hr, it subsequently formed larval cuticle. The optimal conditions for this larval cuticle formation were exposure to 5 μg/ml of β-ecdysone in the presence of 3 μg/ml of epoxygeranylsesamole for 48 hr. When the epidermis was cultured in Grace's medium for 3 days and then exposed to 5 μg/ml of β-ecdysone for 4 days, 70% of the pieces formed pupal cuticle. By contrast, if both ecdysone and JH were added, 77% formed larval cuticle. Therefore, the change from larval to pupal commitment of the epidermal cells requires not only the absence of JH, but also exposure to ecdysone.  相似文献   

11.
The response of the follicle cells of Rhodnius prolixus to JH in vitro was found to be independent of de novo macromolecular synthesis as exemplified by the failure of Actinomycin D, and puromycin to inhibit the response at any but the highest concentrations employed. C18 JH was found to be a more effective gonadotropin than C16 JH in this in vitro study. Neither methyl palmitate nor ecdysone mimiced or antagonised the action of JH on the follicle cells in vitro. Follicle cells of ovaries removed from allatectomised mated females failed to respond to C16 JH and ecdysone in vitro.  相似文献   

12.
Summary Imaginal wing discs ofPieris brassicae can be cultured in vitro for extended periods. Their ultrastructural development was investigated after culture in the presence of various concentrations of ecdysone and ecdysterone. When ecdysone or low concentrations of ecdysterone (2×10–7 M) were added to culture media, larval discs secreted a pupal cuticle and they subsequently differentiated scales; prepupal discs completed their imaginal development. With a higher concentration of ecdysterone (2×10–6 M), all discs produced abundant but fragmentary cuticular material.Prepupal discs were able to metabolize both hormones in vitro. Ecdysterone was mainly converted into a polar compound detectable after a short period of incubation. Ecdysone was transformed, at a slower rate, forming a polar compound and 26-hydroxyecdysone but no ecdysterone.  相似文献   

13.

Background

Insect metamorphosis proceeds in two modes: hemimetaboly, gradual change along the life cycle; and holometaboly, abrupt change from larvae to adult mediated by a pupal stage. Both are regulated by 20-hydroxyecdysone (20E), which promotes molts, and juvenile hormone (JH), which represses adult morphogenesis. Expression of Broad-complex (BR-C) is induced by 20E and modulated by JH. In holometabolous species, like Drosophila melanogaster, BR-C expression is inhibited by JH in young larvae and enhanced in mature larvae, when JH declines and BR-C expression specifies the pupal stage.

Methods

Using Blattella germanica as a basal hemimetabolous model, we determined the patterns of expression of BR-C mRNAs using quantitative RT-PCR, and we studied the functions of BR-C factors using RNA interference approaches.

Results

We found that BR-C expression is enhanced by JH and correlates with JH hemolymph concentration. BR-C factors appear to be involved in cell division and wing pad growth, as well as wing vein patterning.

Conclusions

In B. germanica, expression of BR-C is enhanced by JH, and BR-C factors appear to promote wing growth to reach the right size, form and patterning, which contrast with the endocrine regulation and complex functions observed in holometabolous species.

General significance

Our results shed new light to the evolution from hemimetaboly to holometaboly regarding BR-C, whose regulation and functions were affected by two innovations: 1) a shift in JH action on BR-C expression during young stages, from stimulatory to inhibitory, and 2) an expansion of functions, from regulating wing development, to determining pupal morphogenesis.  相似文献   

14.
After repetitive injections of moderate doses of ecdysone, ecdysterone or phenobarbital to young Vth (last) instar larvae of Locusta migratoria, the conversion rate of ecdysone to ecdysterone in vivo is significantly higher than in control insects. Similarly, 5 hr after injection of a low dose of ecdysone or ecdysterone, a strong ‘induction’ of ecdysone 20-monooxygenase activity occurs. This ‘inductive’ effect is blocked by cycloheximide.Simultaneous injections of ecdysone and ecdysterone show that hydroxylation of ecdysone is inhibited by the product of the reaction, ecdysterone. Removal of the prothoracic glands and X-ray treatment of the hemocytopoietic tissue do not affect ecdysone hydroxylation. The mechanism of induction and inhibition of ecdysone 20-monooxygenase shown in this study is probably responsible for the important variations of this key enzyme which have been reported from several insect species.  相似文献   

15.
An in vitro incubation technique in which imaginal disks are exposed to juvenile hormone and some of its analogues is presented. These substances were shown to have an inhibitory effect on the incorporation of tritiated thymidine (3HTdR) during the post-feeding period of the last larval instar of Calliphora. The technique makes it possible to investigate the nature of the effects of ecdysterone and juvenile hormones on the DNA synthesis in imaginal disks of exo- and endopterygote insects.  相似文献   

16.
We report the effects of three ecdysone analogues in the presence and absence of fat body on the wing imaginal disks of Cadra cautella, Paramyelois transitella, and Plodia interpunctella cultured in vitro in a modified Grace's medium. Alpha-ecdysone, unlike beta-ecdysone, did not stimulate cuticle deposition in Plodia disks at low doses and was only slightly effective at high doses. Also, the response of wing disks of Cadra and Paramyelois to beta-ecdysone and alpha ecdysone with and without fat body was similar to that of Plodia. Combinations of alpha-ecdysone and beta-ecdysone were more effective than beta-ecdysone alone in Plodia disks, but a synthetic analogue, 22-iso-ecdysone, had no effect on cuticle deposition when it was used alone or with beta-ecdysone in the presence or absence of fat body. Thus, the results with alpha-ecdysone and beta-ecdysone were not non-specific steroidal effects.  相似文献   

17.
Morphogenetic effect of juvenile hormone (JH) and its analogues, dodecyl methyl ether, ethyl trimethyl dodecadienoate and methylenedioxyphenoxy-6-epoxy-3-ethyl-7-methyl-2-nonene, on carefully timed Tenebrio pupae was determined. These results show that the response of pupal epidermal cells to JH varied with age during the first 48 hr after larval-pupal ecdysis. The pupae showed low morphogenetic response soon after pupal ecdysis but their response increased gradually until 18 hr. The response to JH decreased in pupae older than about 32 hr; and 48 hr old pupae were unresponsive to low doses of JH employed in this study. Age-related differences in the pattern of response of the individual body regions to JH were also observed.The synergistic effect of 1 μg of ecdysterone with these JH compounds was also tested in relation to the age of Tenebrio pupa. The results show that the synergistic effect of ecdysterone was generally limited to >18 hr old pupae. This suggests that the physiological basis of the synergistic effect of ecdysterone may be the latter's ability to synchronize epidermal cells.The significance of these observations in the analysis of time of action of juvenile hormone is discussed.  相似文献   

18.
Expression of Manduca Broad-Complex (BR-C) mRNA in the larval epidermis is under the dual control of ecdysone and juvenile hormone (JH). Immunocytochemistry with antibodies that recognize the core, Z2, and Z4 domains of Manduca BR-C proteins showed that BR-C appearance not only temporally correlates with pupal commitment of the epidermis on day 3 of the fifth (final) larval instar, but also occurs in a strict spatial pattern within the abdominal segment similar to that seen for the loss of sensitivity to JH. Levels of Z2 and Z4 BR-C proteins shift with Z2 predominating at pupal commitment and Z4 dominant during early pupal cuticle synthesis. Both induction of BR-C mRNA in the epidermis by 20-hydroxyecdysone (20E) and its suppression by JH were shown to be independent of new protein synthesis. For suppression JH must be present during the initial exposure to 20E. When JH was given 6 h after 20E, suppression was only seen in those regions that had not yet expressed BR-C. In the wing discs BR-C was first detected earlier 1.5 days after ecdysis, coincident with the pupal commitment of the wing. Our findings suggest that BR-C expression is one of the first molecular events underlying pupal commitment of both epidermis and wing discs.  相似文献   

19.
We have investigated the actions of beta-ecdysone and fat body on wing disks of Plodia interpunctella in a series of sequential incubations in vitro. These experiments revealed that extended treatment times of beta-ecdysone at concentrations of 0·5 μg/ml or greater inhibited development of disks, and confirm that the presence of a fat body factor in the culture medium prevents this inhibition.  相似文献   

20.
Ecdysone haemolymph levels and in vivo development of imaginal wing discs have been studied during the last larval instar of Pieris brassicae.During this period, β-ecdysone variations show two successive peaks, the first one related to the induction of wandering stage, and the second (main) one to pupal cuticle synthesis. The observed situation is very similar to that of Manduca sexta. Imaginal wing disc growth is composed of several genetically programmed steps that need the presence of ecdysone, but do not appear very closely linked to circulating hormone levels. It seems that ecdysone haemolymph peaks should be considered as periods where ecdysone levels are above a threshold value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号