共查询到20条相似文献,搜索用时 0 毫秒
1.
The simultaneous disposition of fenoprofen enantiomers in synovial fluid and plasma was studied in 11 patients with arthritis and chronic knee effusions treated with a single oral dose of 600 mg rac-fenoprofen. A plasma sample and a synovial fluid sample were collected simultaneously from each patient up to 16 h after the administration of fenoprofen. A stereospecific assay for fenoprofen using LC-MS-MS was developed and applied successfully to the analysis of the enantiomers in plasma (LOQ = 10 ng of each enantiomer/ml) and synovial fluid (LOQ = 25 ng of each enantiomer/ml). The values of the area under the curve (AUC) for the S-(+)-fenoprofen eutomer were approximately 2.5 times higher in plasma than in synovial fluid (256 vs 104 microg h/ml), while the values for the R-(-)-fenoprofen distomer were about four times higher in plasma than in synovial fluid (42.5 vs 10.5 microg h/ml). These data demonstrate accumulation of the S-(+)-fenoprofen eutomer in plasma and in synovial fluid, with concentrations versus time AUC (+)/(-) ratios of 6.0 in plasma and 9.9 in synovial fluid, suggesting a greater accumulation of the eutomer at the active site represented by synovial fluid than in plasma. This result demonstrates the importance of enantioselective methods and of analysis of synovial fluid rather than plasma in studies of the pharmacokinetics-pharmacodynamics of fenoprofen. 相似文献
2.
Neutrophil infiltration in the synovia is an important feature of the local inflammatory process associated with rheumatoid arthritis. The present study is focused on the effects exerted in vitro by the synovial fluid versus serum on the respiratory burst of granulocytes isolated either from blood or synovial fluid of rheumatoid arthritis patients. The respiratory burst was evaluated as superoxide anion release, by lucigenin-amplified chemiluminescence. Our data show that the respiratory burst of granulocytes isolated from rheumatoid arthritis patients might trigger a significant oxidative stress both in periphery and the inflamed joint. These cells show no pathological pattern when activated in vitro by the chemotactic peptide fMLP, heterologous synovial fluid or serum. Acellular synovial fluid amplifies the superoxide anion release induced by fMLP more than the corresponding serum, indicating that a bacterian infection in the joint might enhance the oxidative damage in the inflamed synovium. 相似文献
3.
Polymorphonuclear leukocytes (PMNs) isolated from peripheral blood and synovial fluid of patients with rheumatoid arthritis and from peripheral blood of volunteers were stimulated with 12-Phorbol-13-myristate acetate (PMA). No significant differences in luminol-amplified chemiluminescence were found between different patients and control groups. However, two distinct patterns of native chemiluminescence were observed. Type I showed no, or only a small, increase in native chemiluminescence with integral counts over 30 min less than 3 × 10 5 cpm, and the majority of samples from volunteers were of this type. Type II was characterized by a burst of native chemiluminescence starting 8 to 15 min after cell stimulation. It was found in most PMN samples from patients with rheumatoid arthritis. Integral counts over 30 min were always higher than 10 6 cpm and as high as 10 8 cpm in some cases. A strong inhibition of the Type II native chemiluminescence was caused by desferal, catalase, thiourea, and glutathione. However, the luminol-amplified chemiluminescence remained unchanged or was only slightly decreased under the same experimental conditions. Sodium azide strongly inhibited both kinds of luminscence. Hydroxyl radicals, formed in a Fenton reaction, may be important intermediates in the Type II native chemiluminescence. 相似文献
4.
An intrinsically unstructured human myelin basic protein (hMBP) was expressed in the milk of transgenic cows (TGmilk) and found exclusively associated with the casein micellar phase. The interaction between the recombinant protein and milk caseins was investigated using surface plasmon resonance (SPR). An anti‐human myelin basic protein antibody was covalently immobilized to the surface of the sensor chip. Subsequently the interaction between the recombinant protein (captured by this antibody) and caseins was studied in comparison to that noted with its human counterpart. Results showed a calcium‐mediated interaction between the recombinant protein and caseins. The order of magnitude of this interaction was in agreement with the number of phosphorylated residues carried by each type of casein ( αs‐ > β‐ > κ‐casein). This selective interaction was not noted between the human protein and milk caseins indicating that the recombinant protein was phosphorylated to a higher extent than the human protein. The obtained results indicated that the co‐expression of the recombinant protein and caseins by the mammary gland along with the recombinant protein's ability to form calcium bridges played a key role in the association of the recombinant human myelin basic protein (rhMBP) with the casein micelles of milk. Despite this association between the recombinant protein and milk caseins, light scattering investigations using diffusing wave spectroscopy (DWS) showed no significant differences between the milks of the transgenic and the non‐transgenic control cows, with respect to both the average micelle size and surface charges. This was attributed to the low expression levels of the recombinant protein in milk. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Summary. Taurine (Tau), a dominant free amino acid present in neutrophil cytoplasm, serves as a scavenger for hypochlorous acid (HOCl)
released during these cells activation. The resulting taurine chloramine (Tau-Cl) exerts potent anti-inflammatory properties.
In the present study we tested the hypothesis that the formation of Tau-Cl is impaired in neutrophils isolated from rheumatoid
arthritis (RA) patients. The inhibition of zymosan-triggered chemiluminescence in the presence of exogenous Tau was used for
indirect measurement of Tau-Cl generation. The chemiluminescence of neutrophils isolated from peripheral blood (PB) of healthy
volunteers and RA patients was inhibited by Tau with similar potency. By contrast, synovial fluid (SF) neutrophils of these
patients were significantly less sensitive for Tau-mediated inhibition. Therefore, our data indicate impaired generation of
Tau-Cl in neutrophils isolated from SF of RA patients.
Received November 29, 2001 Accepted January 9, 2002 Published online August 30, 2002
Acknowledgements This work was supported by grants from the State Committee for Scientific Research of Poland (No. P05A 104 19) and the Institute
of Rheumatology. The Institute of Rheumatology is supported by a core grant from the State Committee for Scientific Research
of Poland.
Authors' address: Ewa Kontny, Ph.D, Department of Pathophysiology and Immunology, Institute of Rheumatology, Spartanska 1, 02-637 Warsaw, Poland,
E-mail: zpatiir@warman.com.pl
Abbreviations: Tau, taurine; Tau-Cl, taurine chloramine; PB, peripheral blood; SF, synovial fluid; RA, rheumatoid arthritis 相似文献
6.
Osteoarthritis (OA) is a chronic disease affecting the cartilage of over 15% of Canadians. Synovial fluid mesenchymal progenitor cells (sfMPCs) are present in joints and are thought to contribute to healing. OA sfMPCs have a greater proliferative ability but decreased chondrogenic potential. However, little is known about the factors influencing/regulating the differences between normal and OA sfMPCs. Recently, our lab has shown that sfMPC chondrogenic differentiation in vitro is favorably biased toward a similar osmotic environment as they experience in vivo. The current study now examines the expression and functionality of a variety of ion channels in sfMPCs derived from normal individuals and early OA patients. Results indicated that there is differential ion channel regulation at the functional level and expression level in early OA sfMPCs. All ion channels were upregulated in early OA compared to normal sfMPCs with the exception of KCNMA1 at the mRNA level. At the protein level, TRPV4 was over expressed in early OA sfMPCs, while KCNJ12 and KCNMA1 were unchanged between normal and early OA sfMPCs. At the functional level, the inward rectifying potassium channel was under expressed in early OA sfMPCs, however the membrane potential was unchanged between normal and early OA sfMPCs. In the synovial environment itself, a number of differences in ion concentration between normal and early OA synovial fluid were observed. These findings suggest that normal and OA progenitor cells demonstrate functional differences in how they interact with the synovial ion environment. 相似文献
7.
The purpose of this study was to identify those proteins relatively more abundant in the synovial fluid (SF) of patients suffering from rheumatoid arthritis (RA) and osteoarthritis (OA) using high performance liquid chromatography coupled to mass spectrometry. 20 individual SF samples from each disease were pooled into two groups (RA and OA) to reduce the contribution of extreme individual values. Prior to the proteomic analysis, samples were immunodepleted from the top 20 most abundant plasma proteins, to enrich the lower-abundance protein fractions. Then, they were subjected to protein size fractioning and in-gel digestion, followed by reversed-phase peptide separation in a nano-LC system and subsequent peptide identification by MALDI-TOF/TOF. This strategy led to the identification of 136 different proteins in SF, which is the largest number of SF proteins described up to date by proteomics. A relative quantification of the proteins between RA and OA was carried out by spectral counting analysis. In RA, our results show a greater relative abundance of proteins related to complement activation, inflammation and the immune response, such as the major matrix metalloproteinases and several neutrophil-related proteins. In OA, we detected an increase in proteins involved in the formation and remodeling of the extracellular matrix (ECM), such as fibronectin, kininogen-1, cartilage acidic protein 1 and cartilage oligomeric matrix protein. The results obtained for MMP-1, BGH3, fibronectin and gelsolin were verified by immunoblotting analyses. Some of the novel proteins identified in this work might be relevant not only for increasing knowledge on the etiopathogenesis of RA and OA processes, but also as putative disease biomarkers, as their presence in SF is a prior step to their dilution in serum. This article is part of a Special Issue entitled: Proteomics: The clinical link. 相似文献
8.
Synovial fluid (SF) may contain cleavage products of proteolytic activities. Our aim was to characterize the degradome through analysis of proteolytic activity and differential abundance of these components in a peptidomic analysis of SF in knee osteoarthritis (OA) patients versus controls ( n = 23). SF samples from end-stage knee osteoarthritis patients undergoing total knee replacement surgery and controls, that is, deceased donors without known knee disease were previously run using liquid chromatography mass spectrometry (LC-MS). This data was used to perform new database searches generating results for non-tryptic and semi-tryptic peptides for studies of degradomics in OA. We used linear mixed models to estimate differences in peptide-level expression between the two groups. Known proteolytic events (from the MEROPS peptidase database) were mapped to the dataset, allowing the identification of potential proteases and which substrates they cleave. We also developed a peptide-centric R tool, proteasy, which facilitates analyses that involve retrieval and mapping of proteolytic events. We identified 429 differentially abundant peptides. We found that the increased abundance of cleaved APOA1 peptides is likely a consequence of enzymatic degradation by metalloproteinases and chymase. We identified metalloproteinase, chymase, and cathepsins as the main proteolytic actors. The analysis indicated increased activity of these proteases irrespective of their abundance. 相似文献
9.
BackgroundSynovial fluid (SF) is a dynamic reservoir for proteins originating from the synovial membrane, cartilage, and plasma, and may therefore reflect the pathophysiological conditions that give rise to arthritis. Our goal was to identify and quantify protein mediators of psoriatic arthritis (PsA) in SF. MethodsAge and gender-matched pooled SF samples from 10 PsA and 10 controls [early osteoarthritis (OA)], were subjected to label-free quantitative proteomics using liquid chromatography coupled to mass spectrometry (LC-MS/MS), to identify differentially expressed proteins based on the ratios of the extracted ion current of each protein between the two groups. Pathway analysis and public database searches were conducted to ensure these proteins held relevance to PsA. Multiplexed selected reaction monitoring (SRM) assays were then utilized to confirm the elevated proteins in the discovery samples and in an independent set of samples from patients with PsA and controls. ResultsWe determined that 137 proteins were differentially expressed between PsA and control SF, and 44 were upregulated. The pathways associated with these proteins were acute-phase response signalling, granulocyte adhesion and diapedesis, and production of nitric oxide and reactive oxygen species in macrophages. The expression of 12 proteins was subsequently quantified using SRM assays. ConclusionsOur in-depth proteomic analysis of the PSA SF proteome identified 12 proteins which were significantly elevated in PsA SF compared to early OA SF. These proteins may be linked to the pathogenesis of PsA, as well serve as putative biomarkers and/or therapeutic targets for this disease. 相似文献
10.
克隆类风湿性关节炎(RA)滑膜细胞(FLS)中的蛋白酪氨酸激酶(PTKs),并研究它们在RA滑膜细胞异常增殖和侵软骨中的作用。根据巳知的PTKs氨基酸序列保守区设计简并引物,采用3'快速末端扩增法(3'RACE)扩增滑膜细胞中PTKs cDNAs的3'末端,将所得序列与Genebank中序列进行比较,以鉴定其是否为巳知的PTKs或与PTKs同源的新序列,然后通过RNA点杂交方法分别观察这些PTKs在RA和骨性关节炎(OA)病人滑膜细胞中的表达水平。结果表明,从RA FLS中克隆到6种巳知PTKs的cDNAs片段,分别为血小板衍生生长因子受体A(PDGFRA)、胰岛素生长因子-1受体(IGF1R)、含discoidin结构域的受体型酪氨酸激酶(DDR2)、Lyn、Janus激酶1(JAK1)和TYK2。RNA点杂交结果显示,在4个RA病人和2个OA病人的滑膜细胞中,PDGFRA、IGF-1R和DDR2在RA滑膜细胞中的表达水平高于OA滑膜细胞,其它几处激酶在两种细胞中的表达水平相同。说明RI滑膜细胞中至少表达PDGFR、IGF1R、Lyn、DDR2、JAK1和TYK2等6种PTKs,其中PDGFRA、IGF1R和DDR2可能与RA滑膜细胞的过度增殖和对软骨的侵蚀性相关。 相似文献
11.
We investigated the potential involvement of pyroptosis, a proinflammatory form of regulated cell death, in rheumatoid arthritis (RA). Synovial fluid, synovial tissues and/or serum were compared among 32 patients with RA, 46 patients with osteoarthritis (OA) and 30 healthy controls. Samples were assayed for interleukin (IL)-1β, IL-18 and lactate hydrogenase (LDH). Synovial expression of NLRP3, caspase-1 and cleaved gasdermin D (GSDMD) was assayed using immunohistochemistry and multiplex immunohistochemistry. Patients with RA showed significantly higher levels of IL-1β and IL-18 in synovial fluid than patients with OA, and significantly higher levels of both cytokines in serum than healthy controls. RA was associated with higher levels of LDH in synovial fluid than OA. Among patients with RA, levels of IL-1β, IL-18 and LDH were significantly higher in synovial fluid than in serum, and the levels in synovial fluid positively correlated with disease activity and inflammation. Synovial cells, particularly macrophages, showed upregulation of NLRP3, caspase-1 and cleaved GSDMD in RA compared to OA. Our results implicate pyroptosis in the pathogenesis of RA, perhaps as a driver of local inflammation in joints. 相似文献
12.
This study was performed in order to gain insight into the occurrence, glycosylation and the possible origin of the acute-phase
proteins α1-acid glycoprotein (AGP) and α1-protease inhibitor (PI) in sera and synovial fluid from patients with rheumatoid
arthritis (RA). Therefore paired sera and synovial fluid samples from patients with RA, and paired synovial fluid samples
from right and left knees of patients with varying degrees of arthritis were studied. Crossed affinity immunoelectrophoresis
(CAIE) was used with concanavalin A and Aleuria aurantia lectin for the detection of the degree of branching and fucosylation,
respectively, and the monoclonal CSLEX-1 for the detection of Sialyl Lewisx (SLex) groups on AGP. For PI, not only CAIE, but
also high-pressure-anion-exchange chromatography with pulsed amperometric detection was used to study the glycosylation. It
was established that the concentrations of AGP and PI were increased in the serum of RA patients compared to normal healthy
controls, but that the concentration of both proteins, as well as albumin, was significantly lower in synovial fluid than
in serum. Furthermore, the type of glycosylation of both AGP and PI found in RA was significantly different from that found
in normals, with increased fucosylation, but there were no major differences in the degree of branching of AGP- or PI-glycans
in RA, compared to normals. No differences in glycosylation could be established between serum and synovial fluid in RA. For
PI an increased fucosylation was found, both in serum and synovial fluid, using both methods of detection, and it could be
established that only the α1→3- and not the α1→6-fucosylation of PI was affected by RA. The increased fucosylation of AGP
resulted in an increased expression of SLex on AGP-glycans. Since the α1→3- fucosylation of AGP was significantly increased
in both serum and synovial fluid from RA patients, and this correlated with systemic but not with local disease parameters,
it can be suggested that acute phase proteins in synovial fluid are most probably of hepatic origin. Abbreviations: AGP, α1-acid
glycoprotein; AAL, Aleuria Aurantia Lectin; Con A, concanavalin A; PI, α1-protease inhibitor; CAIE, crossed affino-immunoelectrophoresis;
SLex, sialyl Lewis X; IL-6, interleukin-6; RA, rheumatoid arthritis; PMN, polymorphonuclear cells; HPAEC, high pressure anion
exchange chromatography
This revised version was published online in November 2006 with corrections to the Cover Date. 相似文献
13.
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease of unknown origin, which exhibits a complex heterogeneity in its pathophysiological background, resulting in differential responses to a range of therapies and poor long-term prognosis. RA synovial fibroblasts (RASFs) are key player cells in RA pathogenesis. Identification of DNA methylation biomarkers is a field that provides potential for improving the process of diagnosis and prognosis of various human diseases. We utilized a genome-wide technique, methylated DNA isolation assay (MeDIA), in combination with a high resolution CpG microarray for discovery of novel hypermethylated genes in RASFs. Thirteen genes ( APEX1, EBF3, EGR2, EN1, IRX1, IRX6, KIF12, LHX2, MIPOL1, SGTA, SIN3A, TOLLIP, and ZHX2) with three consecutive hypermethylated probes were isolated as candidate genes through two CpG microarrays. Pyrosequencing assay was performed to validate the methylation status of TGF-β signaling components, EBF3 and IRX1 genes in RASFs and osteoarthritis (OA) SFs. Hypermethylation at CpG sites in the EBF3 and IRX1 genes was observed with a high methylation index (MI) in RASFs (52.5% and 41.4%, respectively), while a lower MI was observ ed in OASFs and h ealthy SFs (13.2% for EBF3 and 4.3% for IRX1). In addition, RT-PCR analysis showed a remarkable decrease in their mRNA expression in the RA group, compared with the OA or healthy control, and their reduction levels correlated with MI. The current findings suggest that methylation-associated down-regulation of EBF3 and IRX1 genes may play an important role in a pathogenic effect of TGF-β on RASFs. However, further clinical validation with large numbers of patients is needed in order to confirm our findings. 相似文献
14.
Introduction: Synovial fluid (SF) is in close proximity to tissues which are primarily altered during articular disease and has significant potential to better understand the underlying disease pathogeneses of articular pathologies and biomarker discovery. Although development of mass spectrometry-based methods has allowed faster and higher sensitivity techniques, interrogation of the SF proteome has been hindered by its large protein concentration dynamic range, impeding quantification of lower abundant proteins. Areas covered: Recent advances have developed methodologies to reduce the large protein concentration dynamic range of SF and subsequently allow deeper exploration of the SF proteome. This review concentrates on methods to overcome biofluid complexity, mass spectrometry proteomics methodologies, extracellular vesicles proteomics and the application of advances within the field in clinical disease, including osteoarthritis, rheumatoid arthritis, spondyloarthritis and juvenile arthritis. A narrative review was conducted with articles searched using PubMed, 1991–2018. Expert opinion: The SF proteomics field faces various challenges, including the requirement for rigorous and standardised methods of sample collection/storage, the sensitivity and specificity of proteomic assays, techniques to combat the large protein concentration dynamic range and comprehensive data analysis to reduce falsely identified markers. Additionally, there are challenges in developing multi ‘omic’ integration techniques, with computational integration enhancing analysis. 相似文献
15.
Context: Chemerin has been implicated to be correlated with inflammation. Objective: This study aims to determine the association of chemerin levels in serum and synovial fluid (SF) with the disease severity of patients with knee Osteoarthritis (OA). Methods: 124 patients with knee OA and 76 healthy controls were enrolled in this study. Results: Chemerin levels in serum were significant higher with regard to paired SF. Chemerin levles in SF of knee OA patients were correlated with disease severity evaluated by KL grading criteria. Conclusion: Chemerin levels may be involved in the pathophysiology of the development and progression of OA. 相似文献
16.
The oxidative modification of human LDL has been implicated in atherosclerosis, but the mechanisms by which such modification occurs in vivo are not fully understood. In the present study, we have isolated LDL from knee-joint synovial fluid of patients with rheumatoid arthritis. We demonstrate that such LDL is oxidatively modified as evidenced by an increased negative charge, distorted particulate nature and more rapid degradation by cultured macrophages. These results indicate that formation of oxidised LDL is associated with the local inflammatory response. Because the cellular interactions in rheumatoid arthritis have analogies with those in atherogenesis, we suggest that the rheumatoid joint is a useful model of atherosclerosis in which the in vivo process of LDL oxidation may be readily studied. 相似文献
17.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by proliferation and insufficient apoptosis of synovial cells. NK4 is a hepatocyte growth factor antagonist and is implicated in cell proliferation, viability, and apoptosis of many tumour cells. This study aimed to investigate the role of NK4 in the regulation of human RA synovial cell proliferation and apoptosis. Fibroblast‐like synoviocytes (FLSs) isolated from RA patients and MH7A synovial cells were subjected to MTT, flow cytometry, and Western blot analysis. We found that NK4 suppressed cell proliferation through cell cycle arrest at the G0/G1 phase and induced apoptosis in RA synovial cells. Furthermore, NK4 altered the expression of cell cycle and apoptosis‐related proteins such as cyclin D1, cyclin B1, PCNA, p21, p53, Bcl‐2, Bax, cleaved caspase‐9, and cleaved caspase‐3. Additionally, NK4 reduced the phosphorylation level of NF‐κB p65 and upregulated the expression of sirt1, but did not change the levels of p38 and p‐p38 in RA‐FLS and MH7A cells. In conclusion, NK4 inhibits the proliferation and induces apoptosis of human RA synovial cells. NK4 is a promising therapeutic target for RA. We demonstrated that NK4 inhibited cell proliferation by inducing apoptosis and arresting cell cycle in RA‐FLS and MH7A cells. The apoptotic effects of NK4 may be mediated in part by decreasing Bcl‐2 protein level, increasing Bax and caspase 3 protein levels, and inhibiting NF‐κB signalling in RA‐FLS and MH7A cells. These findings reveal potential mechanism underlying the role of NK4 in RA synovial cells and suggest that NK4 is a promising agent for RA treatment. 相似文献
18.
Migration of mesenchymal stem cells plays a key role in regeneration of injured tissues. Rheumatoid arthritis (RA) is a chronic inflammatory disease and synovial fluid (SF) reportedly contains a variety of chemotactic factors. This study was undertaken to investigate the role of SF in migration of human bone marrow-derived mesenchymal stem cells (hBMSCs) and the molecular mechanism of SF-induced cell migration. SF from RA patients greatly stimulated migration of hBMSCs and the SF-induced migration was completely abrogated by pretreatment of the cells with the lysophosphatidic acid (LPA) receptor antagonist Ki16425 and by small interfering RNA- or lentiviral small hairpin RNA-mediated silencing of endogenous LPA 1/Edg2. Moreover, SF from RA patients contains higher concentrations of LPA and an LPA-producing enzyme autotoxin than normal SF. In addition, SF from RA patients increased the intracellular concentration of calcium through a Ki16425-sensitive mechanism and pretreatment of the cells with the calmodulin inhibitor W7 or calmodulin-dependent protein kinase II inhibitor KN93 abrogated the SF-induced cell migration. These results suggest that LPA-LPA 1 plays a key role in the migration of hBMSCs induced by SF from RA patients through LPA 1-dependent activation of calmodulin-dependent protein kinase II. 相似文献
19.
Cartilage destruction is a central pathological feature of osteoarthritis, a leading cause of disability in the US. Cartilage in the adult does not regenerate very efficiently in vivo; and as a result, osteoarthritis leads to irreversible cartilage loss and is accompanied by chronic pain and immobility (1,2). Cartilage tissue engineering offers promising potential to regenerate and restore tissue function. This technology typically involves seeding chondrocytes into natural or synthetic scaffolds and culturing the resulting 3D construct in a balanced medium over a period of time with a goal of engineering a biochemically and biomechanically mature tissue that can be transplanted into a defect site in vivo (3-6). Achieving an optimal condition for chondrocyte growth and matrix deposition is essential for the success of cartilage tissue engineering. In the native joint cavity, cartilage at the articular surface of the bone is bathed in synovial fluid. This clear and viscous fluid provides nutrients to the avascular articular cartilage and contains growth factors, cytokines and enzymes that are important for chondrocyte metabolism (7,8). Furthermore, synovial fluid facilitates low-friction movement between cartilaginous surfaces mainly through secreting two key components, hyaluronan and lubricin (9 10). In contrast, tissue engineered cartilage is most often cultured in artificial media. While these media are likely able to provide more defined conditions for studying chondrocyte metabolism, synovial fluid most accurately reflects the natural environment of which articular chondrocytes reside in. Indeed, synovial fluid has the advantage of being easy to obtain and store, and can often be regularly replenished by the body. Several groups have supplemented the culture medium with synovial fluid in growing human, bovine, rabbit and dog chondrocytes, but mostly used only low levels of synovial fluid (below 20%) (11-25). While chicken, horse and human chondrocytes have been cultured in the medium with higher percentage of synovial fluid, these culture systems were two-dimensional (26-28). Here we present our method of culturing human articular chondrocytes in a 3D system with a high percentage of synovial fluid (up to 100%) over a period of 21 days. In doing so, we overcame a major hurdle presented by the high viscosity of the synovial fluid. This system provides the possibility of studying human chondrocytes in synovial fluid in a 3D setting, which can be further combined with two other important factors (oxygen tension and mechanical loading) (29,30) that constitute the natural environment for cartilage to mimic the natural milieu for cartilage growth. Furthermore, This system may also be used for assaying synovial fluid activity on chondrocytes and provide a platform for developing cartilage regeneration technologies and therapeutic options for arthritis. 相似文献
20.
Hyaluronic acid (HA) is an important biomacromolecule, which fulfils a number of vital physiological functions (especially in the joint synovial fluid) and also has consumer and pharmaceutical applications. HA solution properties have already been quite thoroughly characterized in response to steady shear flows but are less well understood in highly deforming extensional flows. In this study, flow‐induced birefringence measurements are made as a function of the strain rate in planar elongational flow at the stagnation point of a cross‐slot device using HA solutions of a range of molecular weights and at dilute concentrations. The results provide macromolecular relaxation times, molecular weight distributions and the extensional viscosities and Trouton ratios of the fluids. The HA relaxation time is found to vary as 1.8, which is consistent with a partially solvated, expanded coil. An intrinsic Trouton ratio is defined, which varies as 2. The measurement of birefringence with strain rate is shown to be highly sensitive to the molecular weight distribution and can resolve subtle changes due to macromolecular degradation and the presence of fracture products. Mechanical degradation experiments in the cross‐slots indicate midchain scission of HA macromolecules, strongly suggesting near full extension of the high‐molecular weight fraction in the stagnation point extensional flow field. Taken together the results suggest a possible method for analysis of the HA in synovial fluid, and this concept is tested using synovial fluid obtained from porcine tarsal joint. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 287–305, 2014. 相似文献
|