首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies on the selection of bacteriophage T4 mutator mutants have been extended and a method to regulate the mutator activity of DNA polymerase mutator strains has been developed. The nucleotide changes of 17 bacteriophage T4 DNA polymerase mutations that confer a mutator phenotype and the nucleotide substitutions of several other T4 DNA polymerase mutations have been determined. The most striking observation is that the distribution of DNA polymerase mutator mutations is not random; almost all mutator mutations are located in the N-terminal half of the DNA polymerase. It has been shown that the T4 DNA polymerase shares several regions of homology at the protein sequence level with DNA polymerases of herpes, adeno and pox viruses. From studies of bacteriophage T4 and herpes DNA polymerase mutants, and from analyses of similar protein sequences from several organisms, we conclude that DNA polymerase synthetic activities are located in the C-terminal half of the DNA polymerase and that exonucleolytic activity is located nearer the N terminus.  相似文献   

2.
Three different methods have been used to determine the rate at which an individual bacteriophage T4 DNA polymerase molecule moves when synthesizing DNA on a single-stranded DNA template chain. These methods agree in suggesting an in vitro rate for this enzyme of about 250 nucleotides per second at 37 °C. This rate is close to the rate at which bacteriophage T4 replication forks move in vivo (about 500 nucleotides per second). Comparison with the overall amount of DNA synthesis seen in in vitro reactions reveals that only a small fraction of the T4 DNA polymerase molecules present are synthesizing DNA at any one time. This is explicable in terms of the limited processivity of the enzyme in these reactions, along with its capacity for non-productive DNA binding to the DNA template molecules.  相似文献   

3.
A DNA template containing a single ethyl phosphotriester was replicated in vitro by the bacteriophage T4 DNA polymerase and by Escherichia coli DNA polymerase I (DNA pol I). Escherichia coli DNA pol I bypassed the lesion efficiently, but partial inhibition was observed for T4 DNA polymerase. The replication block produced by the ethyl phosphotriester was increased at low dNTP concentrations and for a mutant T4 DNA polymerase with an antimutator phenotype, increased proofreading activity, and reduced ability to bind DNA in the polymerase active center. These observations support a model in which an ethyl phosphotriester impedes primer elongation by T4 DNA polymerase by decreasing formation of the ternary DNA polymerase–DNA–dNTP complex. When primer elongation is not possible, proofreading becomes the favored reaction. Apparent futile cycles of nucleotide incorporation and proofreading, the idling reaction, were observed at the site of the lesion. The replication block was overcome by higher dNTP concentrations. Thus, ethyl phosphotriesters may be tolerated in vivo by the up-regulation of dNTP biosynthesis that occurs during the cellular checkpoint response to blocked DNA replication forks.  相似文献   

4.
The mechanism of enzymatic elongation by Escherichia coli DNA polymerase II of a DNA primer, which is annealed to a unique position on the bacteriophage fd viral DNA, has been studied. The enzyme is found to dissociate from the substrate at specific positions on the genome which act as “barriers” to further primer extension. It is believed these are sites of secondary structure in the DNA. When the template is complexed with E. coli DNA binding protein many of these barriers are eliminated and the enzyme remains associated with the same primer-template molecule during extensive intervals of DNA synthesis. Despite the presence of E. coli DNA binding protein, at least one barrier on the fd genome remains rate-limiting to chain extension and disturbs the otherwise processive mechanism of DNA synthesis. This barrier is overcome by increasing the concentration of enzyme.In contrast, it is found that DNA polymerase I is not rate-limited by structural barriers in the template, however, it exhibits a non-processive mechanism of elongation.These findings provide a framework for understanding the necessity for participation of proteins other than a DNA polymerase in chain extension during chromosomal replication.  相似文献   

5.
Bacteriophage T7 DNA Synthesis in Isolated DNA-Membrane Complexes   总被引:5,自引:4,他引:1       下载免费PDF全文
A DNA-membrane complex isolated from Escherichia coli infected with bacteriophage T7 contains newly synthesized T7 DNA and the T7 DNA polymerase (gene 5 product). The DNA present in the complex appears to exist as a concatemer which contains single-strand breaks and possibly internal single-stranded regions (gaps). The complex is capable of synthesizing T7 DNA by using endogenous template, and part of the DNA is made by a semiconservative mechanism. A portion of the in vitro synthesized DNA sediments in alkaline sucrose as 10-11S material. This DNA is converted to a larger-molecular-weight material after treatment with T4 polynucleotide ligase and E. coli DNA polymerase I.  相似文献   

6.
The nucleotide sequence running from the genetic left end of bacteriophage T7 DNA to within the coding sequence of gene 4 is given, except for the internal coding sequence for the gene 1 protein, which has been determined elsewhere. The sequence presented contains nucleotides 1 to 3342 and 5654 to 12,100 of the approximately 40,000 base-pairs of T7 DNA. This sequence includes: the three strong early promoters and the termination site for Escherichia coli RNA polymerase: eight promoter sites for T7 RNA polymerase; six RNAase III cleavage sites; the primary origin of replication of T7 DNA; the complete coding sequences for 13 previously known T7 proteins, including the anti-restriction protein, protein kinase, DNA ligase, the gene 2 inhibitor of E. coli RNA polymerase, single-strand DNA binding protein, the gene 3 endonuclease, and lysozyme (which is actually an N-acetylmuramyl-l-alanine amidase); the complete coding sequences for eight potential new T7-coded proteins; and two apparently independent initiation sites that produce overlapping polypeptide chains of gene 4 primase. More than 86% of the first 12,100 base-pairs of T7 DNA appear to be devoted to specifying amino acid sequences for T7 proteins, and the arrangement of coding sequences and other genetic elements is very efficient. There is little overlap between coding sequences for different proteins, but junctions between adjacent coding sequences are typically close, the termination codon for one protein often overlapping the initiation codon for the next. For almost half of the potential T7 proteins, the sequence in the messenger RNA that can interact with 16 S ribosomal RNA in initiation of protein synthesis is part of the coding sequence for the preceding protein. The longest non-coding region, about 900 base-pairs, is at the left end of the DNA. The right half of this region contains the strong early promoters for E. coli RNA polymerase and the first RNAase III cleavage site. The left end contains the terminal repetition (nucleotides 1 to 160), followed by a striking array of repeated sequences (nucleotides 175 to 340) that might have some role in packaging the DNA into phage particles, and an A · T-rich region (nucleotides 356 to 492) that contains a promoter for T7 RNA polymerase, and which might function as a replication origin.  相似文献   

7.
Frameshift mutations induced by acridines in bacteriophage T4 have been shown to be due to the ability of these mutagens to cause DNA cleavage by the type II topoisomerase of T4 and the subsequent processing of the 3′ ends at DNA nicks by DNA polymerase or its associated 3′ exonuclease followed by ligation of the processed end to the original 5′ end. An analysis of the ability of nick-processing models is presented here to test the ability of nick processing to account for the DNA sequences of duplications and deletions induced in the aprt gene of CHO cells by teniposide (VM-26) [Han et al. (1993) J. Mol. Biol., 229, 52]. Although teniposide is not an acridine, it induces topoisomerase II-mediated DNA cutting in aprt sequences in vitro and mutagenesis in vivo. Although the previous study noted a correlation between mutation sites and nearby DNA discontinuities induced by the enzyme in vitro, neither the nick-processing model responsible for T4 mutations, nor double-strand break models alone were able to account for most of the mutant sequences. Thus, no single model explained the correlation between teniposide-induced DNA cleavage and mutagenic specificity. This report describes an expanded analysis of the ways that nick-processing models might be related to mutagenesis and demonstrates that a modified nick-processing model provides a biochemical rationale for the mutant speficities. The successful nick-processing model proposes that either 3′ ends at nicks are elongated by DNA polymerase and/or that 5′ ends of nicks are subject to nuclease activity; 3′-nuclease activity is not implicated. The mutagenesis model for nick-processing of teniposide-induced nicks in CHO cells when compared to the mechanism of nick-processing in bacteriophage T4 at acridine-induced nicks provides a framework for considering whether the differences may be due to cell-specific modes of DNA processing and/or due to the precise characteristics of topoisomerase-DNA intermediates created by teniposide or acridine that lead to mutagenesis.  相似文献   

8.
L. J. Reha-Krantz 《Genetics》1990,124(2):213-220
Intragenic complementation was detected within the bacteriophage T4 DNA polymerase gene. Complementation was observed between specific amino (N)-terminal, temperature-sensitive (ts) mutator mutants and more carboxy (C)-terminal mutants lacking DNA polymerase polymerizing functions. Protein sequences surrounding N-terminal mutation sites are similar to sequences found in Escherichia coli ribonuclease H (RNase H) and in the 5'----3' exonuclease domain of E. coli DNA polymerase I. These observations suggest that T4 DNA polymerase, like E. coli DNA polymerase I, contains a discrete N-terminal domain.  相似文献   

9.
10.
Many techniques in molecular biology require the use of pure nucleic acids in general and circular DNA (plasmid or mitochondrial) in particular. We have developed a method to separate these circular molecules from a mixture containing different species of nucleic acids using rolling circle amplification (RCA). RCA of plasmid or genomic DNA using random hexamers and bacteriophage Phi29 DNA polymerase has become increasingly popular for the amplification of template DNA in DNA sequencing protocols. Recently, we reported that the mutant single-stranded DNA binding protein (SSB) from Thermus thermophilus (TthSSB) HB8 eliminates nonspecific DNA products in RCA reactions. We developed this method for separating circular nucleic acids from a mixture having different species of nucleic acids. Use of the mutant TthSSB resulted in an enhancement of plasmid or mitochondrial DNA content in the amplified product by approximately 500×. The use of mutant TthSSB not only promoted the amplification of circular target DNA over the background but also could be used to enhance the amplification of circular targets over linear targets.  相似文献   

11.
M C Kricker  K R Tindall 《Gene》1989,85(1):199-204
We present a simple and convenient protocol for the direct sequencing of bacteriophage T4 genomic DNA. The method utilizes the thermostable DNA polymerase from Thermus aquaticus (Taq) and 32P-end-labeled oligodeoxyribonucleotide primers to produce extension products that allow the analysis of at least 200 nucleotides (nt) on a single sequencing gel. Single-nt changes in the template were easily detectable following an overnight exposure of the autoradiograms. Comparison of sequences from fully modified T4 DNA containing glucosylated hydroxymethyldeoxycytosine or from templates containing cytosine showed little difference in sequence clarity. These techniques considerably simplify the molecular analysis of T-even bacteriophages and should be compatible with automated sequencing methods which employ 5'-end-labeled primers.  相似文献   

12.
Pyrimidine oligonucleotides have been shown to prime the E. coli DNA polymerase I repair reaction, specifically and reproducibly. DNA molecules up to 30 nucleotides long have been obtained from the extension of oligopyrimidine primers, 9 to 11 nucleotides long isolated from the complementary (minus) strand of bacteriophage S13 RFDNA using S13 viral DNA as the template molecule. The sequences of the extended primers were determined from mobility shift following separation of partially extended primers by ionophoresis and homochromatography, and by a modification of the "plus" system of Sanger and Coulson (1975). The 3' leads to 5' exonuclease activity of E. coli DNA polymerase was utilized for the "plus" system in the presence of single dNTPs and also with two dNTPs in the reaction, to give a nearest neighbor type of analysis for sequence confirmation. The ready availability of oligopyrimidine primers from any DNA and the simplification of the "plus" method broaden the range of applicability of the primed DNA polymerase I repair reaction for DNA sequence analysis.  相似文献   

13.
On a variety of single-stranded DNA templates, the overall rate of in vitro DNA synthesis catalyzed by the bacteriophage T4 DNA polymerase is increased about fourfold by addition of the T4 gene 4462 and 45 proteins. Several different methods suggest that this stimulation reflects an increase in the average DNA polymerase “sticking distance”, or processivity, from 800 to about 3000 nucleotides per initiation event. Both the 4462 protein complex and the 45 protein must be present to obtain this effect, and either ATP or dATP hydrolysis is required. Rapid-mixing experiments indicate that the polymerase stimulation is maximized within a few seconds after addition of these “polymerase accessory proteins.”  相似文献   

14.
DNA methylase was partially purified from Escherichia coli W and used to methylate DNA from Bacillus subtilis and bacteriophage φ105. The former DNA was methylated 1.17% and the latter 0.87%. The products were 6-methyladenine (85%) and 5-methylcytosine (15%) in both cases. The methylated DNA was stable toward depurination and viscosity loss at elevated temperatures. Methylation led to a 50% decrease in transforming activity in two strains of B. subtilis and no change in a third strain. The ability of phage φ105 DNA to rescue a defective phage strain was decreased 50% by methylation. No changes were observed in the ability of methylated DNA to serve as a template for DNA polymerase or RNA polymerase. The pattern of cleavage of DNA by a variety of restriction endonucleases was not affected by methylation. There were no changes in the physicochemical properties of DNA on methylation as measured by hyperchromicity on heating, formaldehyde denaturation, viscosity, and sedimentation.  相似文献   

15.
DNA isolated from streptococcal bacteriophage c6A was cut only infrequently by many restriction endonucleases. Fragments of c6A DNA cloned in Escherichia coli plasmids were similarly resistant to cleavage. We conclude that the low frequency of cleavage is due to an unusually low number of restriction enzyme recognition sequences in c6A DNA.  相似文献   

16.
Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq DNA pol/TBD is thermostable, PCR competent and able to copy repetitive deoxynucleotide sequences six to seven times more faithfully than Taq DNA polymerase and makes 2–3-fold fewer AT→GC transition mutations.  相似文献   

17.
Gene 4 protein and DNA polymerase of bacteriophage T7 catalyze RNA-primed DNA synthesis on single-stranded DNA templates. T7 DNA polymerase exhibits an affinity for both gene 4 protein and single-stranded DNA, and gene 4 protein binds stably to single-stranded DNA in the presence of dTTP (Nakai, H. and Richardson, C. C. (1986) J. Biol. Chem. 261, 15208-15216). Gene 4 protein-T7 DNA polymerase-template complexes may be formed in both the presence and absence of nucleoside 5'-triphosphates. The protein-template complexes may be isolated free of unbound proteins and nucleotides by gel filtration and will catalyze RNA-primed DNA synthesis in the presence of ATP, CTP, and the four deoxynucleoside 5'-triphosphates. RNA-primed DNA synthesis may be dissected into separate reactions for primer synthesis and DNA synthesis. Upon incubation of gene 4 protein with single-stranded DNA, ATP, and CTP, a primer-template complex is formed; it is likely that gene 4 protein mediates stable binding of the oligonucleotide to the template. The complex, purified free of unbound proteins and nucleotides, supports DNA synthesis upon addition of DNA polymerase and deoxynucleoside 5'-triphosphates. Association of primers with the template is increased by the presence of dTTP or DNA polymerase during primer synthesis. DNA synthesis supported by primer-template complexes initiates predominantly at gene 4 recognition sequences, indicating that primers are bound to the template at these sites.  相似文献   

18.
The zinc-binding domain (ZBD) of prokaryotic DNA primases has been postulated to be crucial for recognition of specific sequences in the single-stranded DNA template. To determine the molecular basis for this role in recognition, we carried out homolog-scanning mutagenesis of the zinc-binding domain of DNA primase of bacteriophage T7 using a bacterial homolog from Geobacillus stearothermophilus. The ability of T7 DNA primase to catalyze template-directed oligoribonucleotide synthesis is eliminated by substitution of any five-amino acid residue-long segment within the ZBD. The most significant defect occurs upon substitution of a region (Pro-16 to Cys-20) spanning two cysteines that coordinate the zinc ion. The role of this region in primase function was further investigated by generating a protein library composed of multiple amino acid substitutions for Pro-16, Asp-18, and Asn-19 followed by genetic screening for functional proteins. Examination of proteins selected from the screening reveals no change in sequence-specific recognition. However, the more positively charged residues in the region facilitate DNA binding, leading to more efficient oligoribonucleotide synthesis on short templates. The results suggest that the zinc-binding mode alone is not responsible for sequence recognition, but rather its interaction with the RNA polymerase domain is critical for DNA binding and for sequence recognition. Consequently, any alteration in the ZBD that disturbs its conformation leads to loss of DNA-dependent oligoribonucleotide synthesis.  相似文献   

19.
Genetic and physical mapping in the early region of bacteriophage T7 DNA.   总被引:14,自引:0,他引:14  
A detailed physical map of the early region of bacteriophage T7 DNA has been constructed. This map contains: locations for all the cuts made by the restriction endonucleases HindII, HpaII, HaeIII and HaeII, and many of the cuts by HhaI; the approximate end points for each of 61 different deletions; initiation sites and the termination site for RNAs made by Escherichia coli RNA polymerase; an initiation site for RNA made by T7 RNA polymerase; the five primary RNase III cleavage sites of the early region; and the coding sequences for perhaps nine different early proteins. Virtually all of the non-overlapping coding capacity of the five early messenger RNAs is used, except for untranslated stretches of perhaps 30 or so nucleotides at the ends. It seems likely that each of the nine early proteins is made from its own ribosome-binding and initiation site. The mapped restriction cuts provide fixed reference points, and allow DNA fragments containing specific genetic signals to be identified and isolated.The nucleotide sequences around the ends of three different T7 deletions have been determined. Each deletion eliminated a segment of DNA between repeated sequences of seven, eight or ten base-pairs, located 578 to 2100 base-pairs apart in the wild-type sequence. In each case, one copy of the repeated sequence was retained in the deletion mutant. This is consistent with the deletions having arisen by a genetic crossover between the repeated sequences. The approximate frequency of genetic recombination per base-pair has been estimated within two early genes; in both cases, the value was close to 0.01% recombination per base-pair, consistent with the value expected from the total length of the T7 genetic map. Genetic recombination between non-overlapping deletions appears to be severely depressed when the distance between the deletions is closer than about 40 to 50 base-pairs, but recombination between a point mutation and a deletion does not appear to be similarly depressed. This suggests that efficient genetic recombination in T7 may require a base-paired “synapse” of some minimum size between the recombining DNA molecules.  相似文献   

20.
The DNA polymerase-encoding gene of Bacillus subtilis bacteriophage SPO1.   总被引:2,自引:0,他引:2  
V Scarlato  S Gargano 《Gene》1992,118(1):109-113
The bacteriophage SPO1 DNA polymerase-encoding gene, which contains a self-splicing intron, has been sequenced and its amino acid (aa) sequence has been deduced. The aa sequence of SPO1 DNA polymerase shows a high degree of similarity with that of DNA polymerase I from Escherichia coli (Po1I). Alignment with the sequences of Po1I, and the phi 29 and SPO1 DNA polymerases indicate that the aa residues that have been implicated in 3'----5' exonuclease activities are conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号