首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effects of JHA (ZR-515) application or brain implantation on metamorphosis and adult development were examined in the last instar larvae and pupae of Mamestra brassicae. When JHA was applied to neck-ligated 4- or 5-day-old larvae or to the isolated abdomens of 5-day-old larvae containing implanted prothoracic glands taken from 5-day-old larvae, the insects pupated. Dauer pupae and diapausing pupae treated with JHA showed adult development. By contrast, pupation could not be induced by the application of JHA to 2- or 3-day-old neck-ligated larvae or to the isolated abdomens of 5-day-old larvae containing implanted prothoracic glands from 0-day-old larvae. Implantation of a brain into neck-ligated 3- or 5-day-old larvae (at the beginning of gut emptying and wandering) caused pupation of the host. A similar result was obtained when both a brain and the prothoracic glands from 0- or 5-day-old larvae were implanted into the isolated abdomens of 5-day-old larvae. These results indicate that activation of the prothoracic glands by application of JHA is temporally restricted to the last part of the last larval instar and to the pupal stage, while the activation by prothoracicotropic hormone (PTTH) can occur throughout the last larval instar and the pupal stage. In addition, the implantation of brains or application of JHA to neck-ligated 5-day-old larvae 25 days after ligation seldom induced pupation of the hosts, a result which suggests that larval prothoracic glands maintained under juvenile hormone (JH) or PTTH-free conditions for long periods of time may become insensitive to reactivation by both hormones.  相似文献   

2.
The last larval moult of Galleria mellonella is induced by an elevation of ecdysteroid titre to more than 200 ng/g. After ecdysis the titre remains very low until 70 hr of the last-instar when a slight elevation in ecdysteroid concentration initiates the onset of metamorphosis. An ecdysteroid peak (275 ng/g), which occurs between 108 and 144 hr, is associated with wandering and cocoon spinning. Pupal ecdysis follows about 20 hr after a large ecdysteroid peak (780 ng/g) with a maximum in slowly-mobile prepupae (160 hr of the last larval instar). The ecdysteroid decrease between the two peaks coincides with the period when the larvae exposed to unfavourable conditions enter diapause. The pupal-adult moult is initiated by a high ecdysteroid peak (1500–2500 ng/g) in early pupae and imaginal cuticle is secreted in response to a smaller peak (ca. 500 ng/g) in the middle of pupal instar.Until early pupae, the ecdysteroid content is regulated by the prothoracic glands. In decapitated larvae the glands become spontaneously active after 30–40 days and the body titre of ecdysteroids undergoes an increase; the glands revert to inactivity when the insects accomplish secretion of pupal cuticle. A similar ecdysteroid increase occurs within 10 days when the decapitated larvae receive implants of brains releasing the prothoracicotropic neurohormone (PTTH). In either case, the pupation-inducing increase of ecdysteroids is 3 times higher than the large ecdysteroid peak in the last-instar of intact larvae. This indicates that the function of prothoracic glands in intact larvae is restrained, probably by the juvenile hormone (JH). Exogenous JH suppresses the spontaneous activation of the prothoracic glands in decapitated larvae and reduces the ecdysteroid concentration in those larvae (both decapitated and intact), whose glands were activated by PTTH. Furthermore, JH influences the PTTH release from the brain in situ: depending on JH concentration and the age and size of treated larvae, the PTTH liberation is either accelerated or delayed.Neither in G. mellonella larvae, nor in the diapausing pupae of Hyalophora cecropia and Celerio euphorbiae, does JH directly activate the prothoracic glands. It is suggested that the induction of the moult by JH in decerebrate insects, which has been observed in some species, is either due to indirect stimulation of ecdysteroid production or to increased sensitivity of target tissues to ecdysteroids. In G. mellonella, a moult occurs at a 5–15 times lower than usual ecdysteroid concentration when the last-instar larvae are exposed to JH.  相似文献   

3.
Most pupae of H. punctiger enter diapause when reared at 19°C, 12L:12D. When pharate pupae were treated for only 12 hr at 28°C about 50% developed at 19°C. The proportion of non-diapausing pupae increased as the temperature at which the pharate pupal stage was spent increased.The quantity of injected 20-hydroxyecdysone necessary to promote development in diapausing pupae varied from about 1 μg g?1 soon after pupation to about 4 μg g?1 after 50 days. It fell somewhat after 150 days.Removing brains from non-diapausing pupae showed that the brain secreted its hormone at the time of pupation (or just before). However, if the pupae were kept at 19°C development did not occur unless the brain remained in situ for at least 20 hr at 28°C. Implanting brains from non-diapausing pupae into diapausing ones had no measurable effect.These results may be explained by postulating that the prothoracic gland is ‘activated’ by exposure to high temperature, but that it reverts to inactivity over a period at 19°C. The ‘active’ gland must then be stimulated by brain hormone for a long period to trigger secretion of its hormone, which results in development. Diapause is thus the result of the failure of the prothoracic gland to secrete.  相似文献   

4.
The prothoracotropic action of ecdysone analogues was examined, using the brainless, diapausing pupae of Bombyx mori with or without inclusion of prothoracic glands. The most effective of those hormones to stimulate prothoracic glands to secrete the moulting hormone was found to be cyasterone. The other analogues such as ponasterone A, ecdysterone, and inokosterone showed a lower activity with regard to prothoracotropic action. The female prothoracic glands were found to be more sensitive to the ecdysones than the male ones. The time lag from hormone injection to emergence indicated the dual actions of the injected ecdysones, directly on the target organs and indirectly on the prothoracic glands subsequent to secreting the moulting hormone.  相似文献   

5.
Pupal diapause in Heliothis zea is regulated by a temperature-sensitive mechanism which prevents ecdysone production despite the release of prothoracicotropic hormone. To determine how this mechanism functioned, donor prothoracic glands were implanted into prothoracic gland-ablated hosts to test their ability to produce ecdysone in a diapause-sustaining temperature of 19°C. Results of these experiments ruled out the possibility that ecdysis production was regulated by the nervous system or by a mechanism intrinsic to the prothoracic glands, and suggested that a humoral factor was required for diapause termination.Haemolymph injection experiments supported this humoral factor hypothesis, i.e. haemolymph from non-diapausing donor pupae terminated diapause in hosts maintained at 19°C, whereas haemolymph from diapausing donor pupae had no such effect. These findings indicate that the temperature-sensitive mechanism regulating H. zea diapause functions by controlling the availability of a humoral factor necessary for ecdysone production by the prothoracic glands.  相似文献   

6.
Prothoracic glands of Heliothis zea pupae require both a humoral factor and prothoracicotropic hormone (PTTH) to synthesize ecdysone. The humoral factor is absent when pupae are maintained at diapause-sustaining temperatures. Thus, pupae remain in diapause despite the release of PTTH at or before larval-pupal ecdysis.Tissue implantation experiments revealed that a diapause-terminating factor is present in the fat body of non-diapausing pupae. Other tissue implantation experiments showed that, when diapausing pupae were transferred from 19 to 27°C, diapause-terminating activity appeared first in the fat body and then the fat body into the haemolymph. HPLC separation of the haemolymph and fat body fractions followed by bioassay demonstrated that fractions containing diapause-terminating activity eluted from both tissues within 28–30 min. These results suggest that the factors found in the fat body and haemolymph may be the same compound.Evidence from ecdysone radioimmunoassay experiments ruled out the possibility that the diapauseterminating activity was due to either free or conjugated ecdysteroids. Corresponding in vitro experiments in which the prothoracic glands were cultured with brain extracts versus fat body and haemolymph fractions also indicated that the haemolymph/fat body factor was not PTTH.  相似文献   

7.
The effects of exogenous moulting hormones, ecdysone and 20-hydroxyecdysone on ecdysteroid production were studied in vivo in Pieris brassicae pupae. Both hormones inhibit ecdysteroid production; however, 20-hydroxyecdysone is much more efficient than ecdysone, and it is likely that the ecdysone effect is due to its partial conversion into 20-hydroxyecdysone. These results suggest that 20-hydroxyecdysone acts on ecdysteroid production as a negative-feedback regulator. Furthermore, since 20-hydroxyecdysone elicits inhibition in headless pupae, it is suggested that 20-hydroxyecdysone acts directly upon the prothoracic glands.  相似文献   

8.
The prothoracic glands of the early last-instar larva of Mamestra brassicae (day 0–3) were found previously to be insensitive to stimulation by juvenile hormone, whereas those later in the instar (from day 4 on) were activated by this hormone. When neck-ligatured young larvae (day-1, day-2 and day-3) were given juvenile hormone 5–10 days after ligation, pupation was induced. Similarly, juvenile hormone induced pupation of isolated abdomens which contained prothoracic glands taken from neck-ligatured day-3 larvae 5 days after ligation. If the glands were exposed to prothoracicotropic hormone (PTTH) from implanted brains before they were transplanted to isolated abdomens, their sensitivity to juvenile hormone activation was enhanced. Ecdysone but not 20-hydroxyecdysone given every 3 hr for 12 hr also slightly enhanced sensitivity. These results suggest that prothoracic glands from either day-1, day-2 or day-3 larvae can slowly acquire a sensitivity to juvenile hormone activation by prolonged incubation in the absence of factors from the head. The acquisition of sensitivity occurs more rapidly in the presence of both a factor from the brain, presumably PTTH, and ecdysone released from the prothoracic glands themselves.  相似文献   

9.
Summary Due to its close structural homology with the 4K prothoracicotropic hormone isolated from Bombyx mori, we tested the ability of vertebrate insulin to break pupal diapause in a Lepidopteran, Pieris brassicae. Injection of 5g of bovine insulin in diapausing pupae led to diapause termination and synchronous adult eclosion; the effect of insulin was dose-dependent. Bovine insulin-A chain and B chain injected separately failed to show any biological activity suggesting that the intact structure of the molecule is required. Bovine insulin also promoted adult development of decapitated diapausing animals. We show that insulin triggers a reactivation of the neuroendocrine system leading to a neosynthesis of ecdysone beginning 6 days after treatment. This neosynthesis also occurred in beheaded animals suggesting that insulin stimulates the prothoracic glands without acting via the brain.  相似文献   

10.
The application of juvenile hormone I or ZR 512 to neck-ligated, day-5 fifth instar (V5) larvae reduced the time to pupation in a dose-dependent manner when compared to neck-ligated controls treated with methyl epoxy stearate. Haemolymph ecdysteroid titres determined by radioimmunoassay (RIA) reflected the ability of juvenile hormone I and ZR 512 to stimulate larval-pupal development, i.e. the ecdysteroid titres were similar to those of normally developing larvae although the ecdysteroid peak elicited by ZR 512 lagged that in the normal titre by 1 day, while that elicited by juvenile hormone I lagged the ecdysteroid peak in normal larvae by 2 days. Neck-ligated V5 larvae that were untreated ultimately pupated and the haemolymph ecdysteroid peak eliciting pupation in these animals was 7 μg/ml haemolymph, almost double that of normal animals and ZR 512- and juvenile hormone I-treated, ligated larvae. The data indicated that juvenile hormone I does stimulate the prothoracic glands but to determine whether this stimulation was direct or indirect, an in vitro approach was taken. Prothoracic glands from V5, V6 and V7 larvae were incubated in vitro under conditions in which they could be stimulated by prothoracicotropic hormone, and were exposed to concentration of free juvenile hormones I, II, III or ZR 512 ranging from 10?5M to 10?10M. In no case were the prothoracic glands stimulated in a dose-dependent manner that would be indicative of hormone activation. Similar results were obtained when juvenile hormone bound to binding protein was incubated with the prothoracic glands. Studies with the acids of the three juvenile hormone homologues revealed them to be ineffective in activating prothoracic glands, although juvenile hormone III acid does appear to inhibit the synthesis of ecdysone by day-0 pupal prothoracic glands. The significance of the latter effect is unknown. It is concluded from these data that juvenile hormone can, indeed, activate late larval prothoracic glands in situ, but does so indirectly.  相似文献   

11.
The sensitivity of the prothoracic glands to juvenile hormone and prothoracicotropic hormone (PTTH) of penultimate (5th)-instar larvae of Mamestra brassicae was compared with that of the same-instar larvae destined for pupal ecdysis by allatectomy. The activity of the prothoracic glands was assessed using either moulting of isolated abdomens or ecdysone radioimmunoassay. Juvenile hormone application immediately after neck-ligation (which removes brain-corpora cardiaca-corpora allata complex) prevented prothoracic gland function in larvae at all stages. When larvae were allatectomized 12 hr after ecdysis, followed by neck-ligation at different times and given juvenile hormone immediately, the hormone inhibited the prothoracic glands of young larvae, but activated the prothoracic glands from day-5 or older larvae. Juvenile hormone I, juvenile hormone II and methoprene activated the prothoracic glands, but juvenile hormone III was relatively ineffective. Brain implantation instead of juvenile hormone application led to activation of the prothoracic glands at all stages.Allatectomy thus caused changes leading to metamorphosis including a transformation of the prothoracic glands from ‘larval’ to ‘pupal’ type. After this change these prothoracic glands were able to respond not only to PTTH but also to juvenile hormone just as in last-instar larvae.  相似文献   

12.
By a technique of “partial masking” it has been demonstrated that only the head of last instar larvae of P. brassicae (reared under 9 hr/24 hr white light, 20°C) is sensitive to an additional 7 hr of blue or green or yellow lights. In only this case, the percentage of pupal diapause is considerably reduced. No part of the caterpillar seems particularly sensible to red light (630–670 nm) corresponding to the main absorbed wavelights of pterobilin, the integumental pigment of the larvae. The technique of “partial masking” shows that the photoreceptor is in the abdomen when a brain is grafted in this part of the larvae. On the other hand, long photophases in white or blue lights can activate brains of diapausing larvae grafted in brainless diapausing pupae. This shows the important rôle of the brain in the induction of pupal diapause. The eyes of the larvae can be also considered as photoreceptors in the induction of this phenomenon.β carotene and lutein have been identified in the brain of 5th instar caterpillars. These two pigments are very important in light reception, but they cannot entirely explain the photosensitivity of the larvae of P. brassicae.  相似文献   

13.
The cross-reactivities of the big and small forms of prothoracicotropic hormone (PTTH) from pupal brains of Manduca sexta and egg-development neurosecretory hormone (EDNH) from heads of adult Aedes aegypti were examined for PTTH by the in vitro Manduca prothoracic gland assay and for EDNH by the in vitro and in vivo Aedes ovary assays. The synthesis of ecdysone by both larval and pupal prothoracic glands of Manduca was increased in a dose-dependent manner by crude extracts of Aedes aegypti heads, reaching a maximum of approx. 3- and 2-fold, respectively. Gel filtration chromatography of the Aedes head extract revealed a peak of EDNH activity with an apparent mol. wt of 11 kD. This partially purified EDNH did not possess prothoracicotropic activity in the in vitro prothoracic gland assay, nor did any other fractions from the gel filtration column. Similarly, partially purified big and small PTTH did not activate Aedes atropalpus ovaries to synthesize ecdysone in vitro, nor did they cause ovarian maturation in vivo. Thus, it appears that the structural differences between PTTH and EDNH are sufficient enough to prevent functional cross-reactivity. The apparent discrepancy in the results obtained with the crude and partially purified EDNH and PTTHs raises questions about the reliability of bioassays for screening the presence and cross-reactivity of peptide neurohormones in crude extracts.  相似文献   

14.
Diapause, a programmed developmental arrest at a specific stage, is common in insects and is regulated by hormones. It is well established that in pupal diapause, cessation of ecdysteroid secretion from the prothoracic glands (PGs) after pupal ecdysis leads to diapause initiation, while resumption of its secretion induces post-diapause development. However, what regulates the activity of the glands is poorly understood, especially for the glands of diapause-terminated pupae. In the present study, we investigate the mechanisms by which post-diapause development is regulated in the cabbage armyworm Mamestra brassicae. We demonstrate that the brain is necessary for the initiation of post-diapause development and that the factor in the brain responsible for the activation of the PGs is the prothoracicotropic hormone (PTTH). Further, through measuring the hemolymph PTTH titers by time-resolved fluoroimmunoassay, we show that PTTH is actually released into the hemolymph prior to the activation of the PGs. Although its peak titer is much lower than expected, this low concentration of PTTH is most likely still effective to activate the PGs of post-diapause pupae, because the responsiveness to PTTH of the glands at this stage is very high compared to that of nondiapause pupal PGs. These results strongly suggest that in M. brassicae, PTTH serves as a trigger to initiate pupa-adult development after diapause termination by stimulating the PGs to secrete ecdysteroid.  相似文献   

15.
《Insect Biochemistry》1986,16(1):143-147
The cellular mechanism of action of the cerebral neuropeptide, prothoracicotropic hormone (PTTH), was investigated in vitro using prothoracic glands from the tobacco hornworm, Manduca sexta. An involvement of cyclic AMP (cAMP) in PTTH-stimulated ecdysone synthesis was demonstrated as follows: (a) the steroidogenic effect of PTTH on prothoracic glands of day 3 fifth instar larvae and day 0 pupae was mimicked by agents (1-methyl-3-isobutylxanthine, dibutyryl cAMP and forskolin) which act by increasing intracellular levels of cAMP; and (b) PTTH stimulated the formation of cAMP in glands from both stages in a rapid, dose-dependent manner. However, a significant accumulation of cAMP in response to PTTH occurred only in larval prothoracic glands. In pupal glands, effects of the neuropeptide on cAMP synthesis were seen only in the presence of a phosphodiesterase inhibitor. Although cAMP is involved in PTTH action at both stages, it thus appears that the developmental state of the prothoracic glands influences the degree to which cAMP accumulates in response to the neurohormone. In addition to cAMP, it appears from the following that Ca2+ plays an essential role in mediating the steroidogenic effects of PTTH: (a) PTTH-stimulated ecdysone synthesis was blocked by omission of Ca2+ from the incubation medium; and (b) ecdysone synthesis was stimulated by the calcium ionophore A23187. Agents which act by increasing intracellular levels of cAMP enhanced ecdysone synthesis equally well in both the presence and absence of extracellular calcium. By contrast, cAMP formation stimulated by both PTTH and A23187 was completely dependent upon extracellular Ca2+. The results suggest a primary role for Ca2+ in mediating PTTH-stimulated synthesis of cAMP, with the cyclic nucleotide in turn stimulating ecdysone synthesis.  相似文献   

16.
In Heliothis zea, pupal diapause is not due to a deficiency of the prothoracicotropic hormone (PTTH), as it is in many other insects. However, PTTH is essential for diapause termination and adult development. Removal of the pupal brain 4 hr after larval-pupal ecdysis blocks the insect's ability to initiate adult development. Transplantation of brain neurosecretory cells restores this ability, whereas other tissues such as corpora allata have no effect. In the diapausing pupa, PTTH is released from the brain within 24 hr after larval-pupal ecdysis. Subsequent removal of the brain fails to block the ability for diapause termination, because PTTH potentiates the ability for adult development. Since diapause termination is suppressed in a temperature of 21°C, the bollworm retains the ability to initiate development in 27°C whereas it remains in diapause in 21°C. Diapause continues even though pupae are supplied with additional PTTH via neurosecretory cell transplantation.Ecdysone injection and prothoracic gland-ablation experiments indicate that the prothoracic glands are the source of the prohormone α-ecdysone, and that diapause is maintained by an α-ecdysone deficiency. This evidence, in conjunction with the above results, suggests that PTTH release potentiates prothoracic gland function in the diapausing pupa which is then regulated by a temperature dependent process.  相似文献   

17.
Relatively large amounts of cyclic AMP are produced by the prothoracic glands (source of the insect moulting hormone or moulting hormone percursor) of the tobacco hornworm, Manduca sexta. Pharate pupal glands produce more cyclic AMP than early fifth instar larval glands, and the addition of aminophylline enhances cyclic AMP accumulation. The much lower cyclic AMP level in the absence of aminophylline indicates the presence of potent cyclic AMP phosphodiesterase activity. Brains (sources of the prothoracicotropic hormone) also produce cyclic AMP but at a lower rate. Brains efficiently produce adenosine from ATP while β-ecdysone inhibits adenosine formation in early fifth instar larval brains. β-Ecdysone stimulates adenyl cyclase in brains of both stages when aminophylline and fluoride are present but has no effect on cyclic AMP accumulation in prothoracic glands. The absence of fluoride greatly reduces the amount of cyclic AMP produced by prothoracic glands when aminophylline is present. No cyclic AMP is accumulated in prothoracic glands when both fluoride and aminophylline are absent or in brains when fluoride is absent, notwithstanding the presence of aminophylline. Other insect tissues were also analysed for cyclic AMP production and none showed levels nearly as high as the prothoracic glands, suggesting a close relationship between cyclic AMP production and the function of the gland.  相似文献   

18.
The prothoracicotropic hormone (PTTH) stimulates ecdysteroidogenesis by prothoracic gland in larval insects. Previous studies showed that Ca2+, cAMP, extracellular signal-regulated kinase (ERK), and tyrosine kinase are involved in PTTH-stimulated ecdysteroidogenesis by the prothoracic glands of both Bombyx mori and Manduca sexta. In the present study, the involvement of phosphoinositide 3-kinase (PI3K)/Akt signaling in PTTH-stimulated ecdysteroidogenesis by B. mori prothoracic glands was further investigated. The results showed that PTTH-stimulated ecdysteroidogenesis was partially blocked by LY294002 and wortmannin, indicating that PI3K is involved in PTTH-stimulated ecdysteroidogenesis. Akt phosphorylation in the prothoracic glands appeared to be moderately stimulated by PTTH in vitro. PTTH-stimulated Akt phosphorylation was inhibited by LY294002. An in vivo PTTH injection into day 6 last instar larvae also increased Akt phosphorylation of the prothoracic glands. In addition, PTTH-stimulated ERK phosphorylation of the prothoracic glands was not inhibited by either LY294002 or wortmannin, indicating that PI3K is not involved in PTTH-stimulated ERK signaling. A23187 and thapsigargin, which stimulated B. mori prothoracic gland ERK phosphorylation and ecdysteroidogenesis, could not activate Akt phosphorylation. PTTH-stimulated ecdysteroidogenesis was not further activated by insulin, indicating the absence of an additive action of insulin and PTTH on the prothoracic glands. The present study, together with the previous demonstration that insulin stimulates B. mori ecdysteroidogenesis through PI3K/Akt signaling, suggests that crosstalk exists in B. mori prothoracic glands between insulin and PTTH signaling, which may play a critical role in precisely regulated ecdysteroidogenesis during development.  相似文献   

19.
Prothoracic glands of last instar wax moth larvae maintain spontaneous secretory activity both in decapitated larvae and in isolated abdomens into which they have been transplanted, as judged by their ability to induce secretion of a new cuticle. Their activity is hormonally stimulated by the brain and inhibited by the prothoracic and mesothoracic ganglia. The subesophageal ganglion seems to suppress the inhibitory influence of the thoracic ganglia. The prothoracic glands of larvae decapitated at different times during the last instar all respond to brain implantation, and this response does not change when brains are implanted at increasing intervals after decapitation. The prothoracotropic activity of the isolated brain is highest in brains of pupae and adults but is relatively and consistently low in brains of last instar larvae. The results demonstrate that the control of prothoracic glands is a complex process governed by the nervous integration of various stimuli.  相似文献   

20.
Summary Using the techniques of intraspecific in vitro activation of prothoracic glands and ring glands by serial dilutions of prothoracicotropic hormone (PTTH) extracts from pupalManduca sexta (Lepidoptera) and larvalSarcophaga bullata (Diptera), a dose-response of activation was observed for both species. In both species maximum activation was at 0.5 brain equivalents while the number of brain equivalents necessary for half maximal stimulation (ED50) was 0.20 forManduca and 0.15 forSarcophaga. When prothoracic glands or ring glands were challenged with interspecific PTTH extracts from a stage different from that of the gland donor, no dose-response of gland activation was observed. However, whenM. sexta larval prothoracic glands were challenged byS. bullata larval PTTH extract, activation was observed. The dose-response profile fell midway between the dose-response curves obtained for the intraspecific assays. Thus, PTTH extract from one insect has the ability to activate the prothoracic glands of an insect representing another order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号