首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus) and native predator (Tasmanian devil Sarcophilus harrisii) and predator and small mammal (swamp rat Rattus lutreolus velutinus) combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator – mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers and survival.  相似文献   

2.
ABSTRACT Research into the use of predator-odor-based repellents as a management tool has gained momentum during the past 30 years. Some studies have suggested that odors from a predator whose diet includes the target species are more effective than odors from a predator that does not consume the species. To evaluate this management tool in the Australian context and to determine the effect, if any, of predator diet on odor repellence, we tested eutherian and metatherian, predator fecal odors on phylogenetically separated pest species that currently occur in Australia. We evaluated fecal odors from tigers (Panthera tigris) and Tasmanian devils (Sarcophilus harrisii) as repellents for goats (Capra hircus) and eastern grey kangaroos (Macropus giganteus). We fed tigers and Tasmanian devils 2 diets: one of goat and one of eastern grey kangaroo. The test fecal odors were more effective than a control odor of carrier material and solvent at deterring goats (P < 0.001) and kangaroos (P = 0.02) from food. Tiger fecal odor was more effective than Tasmanian devil odor in deterring both goats (P = 0.001)and kangaroos (P = 0.03). We observed a decrease in the number of feeding events for goats when they were exposed to the odor from a tiger fed goat compared with all other predator-diet combinations (P < 0.001). We also observed a decrease in feeding events for kangaroos when exposed to the odor from a tiger fed kangaroo compared with all other predator-diet combinations. We observed signs of desensitization to the test odors in goats and habituation to the test odors in kangaroos over the experimental period. A better understanding of the factors involved in desensitization and habituation may increase the effectiveness of fecal odor-based repellents as a humane and nonlethal management tool for managers.  相似文献   

3.
The eastern quoll (Dasyurus viverrinus) is a medium-sized Australian marsupial carnivore that has recently undergone a rapid and severe population decline over the 10 years to 2009, with no sign of recovery. This decline has been linked to a period of unfavourable weather, but subsequent improved weather conditions have not been matched by quoll recovery. A recent study suggested another mechanism: that declines in Tasmanian devil (Sarcophilus harrisii) populations, due to the spread of the fatal Devil Facial Tumour Disease, have released feral cats (Felis catus) from competitive suppression, with eastern quoll declines linked to a subsequent increase in cat sightings. Yet current evidence of intraguild suppression among devils, cats and quolls is scant and equivocal. We therefore assessed the influences of top-down effects on abundance and activity patterns among devils, feral cats and eastern quolls. Between 2011 and 2013, we monitored four carnivore populations using longitudinal trapping and camera surveys, and performed camera surveys at 12 additional sites throughout the eastern quoll’s range. We did not find evidence of a negative relationship between devil and cat abundance, nor of higher cat abundance in areas where devil populations had declined the longest. Cats did not appear to avoid devils spatially; however, there was evidence of temporal separation of cat and devil activity, with reduced separation and increasing nocturnal activity observed in areas where devils had declined the longest. Cats and quolls used the same areas, and there was no evidence that cat and quoll abundances were negatively related. Temporal overlap in observed cat and quoll activity was higher in summer than in winter, but this seasonal difference was unrelated to devil declines. We suggest that cats did not cause the recent quoll decline, but that predation of juvenile quolls by cats could be inhibiting low density quoll populations from recovering their former abundance through a ‘predator pit’ effect following weather-induced decline. Predation intensity could increase further should cats become increasingly nocturnal in response to devil declines.  相似文献   

4.
The recent introduction of red foxes (Vulpes vulpes) to Australia's island state of Tasmania represents a major threat to native fauna. In response, the Tasmanian government has begun a fox eradication program using Foxoff®, a bait containing the poison sodium monofluoroacetate (commonly known as 1080). The bait is potentially attractive to native Tasmanian carnivores as well as to foxes. Of particular concern is the endangered Tasmanian devil (Sarcophilus harrisii), which is already at risk from an emergent infectious disease, devil facial tumor disease (DFTD). In both a captive and a field study using non-toxic Foxoff bait, we assessed bait palatability and possible effects of demographics, hunger level, bait age, and bait burial method on the likelihood of bait uptake by Tasmanian devils. Captive devils showed varying interest in the bait, but wild devils appeared to find it uniformly palatable. In the captive study, males and younger, captive-born animals were more likely to excavate and remove bait. Subterranean burial at 15 cm was the most effective deterrent to bait excavation; effectiveness decreased at shallower depths and with surface-level bait buried beneath soil mounds. Our findings suggest that the current fox-baiting campaign may negatively impact individual devils. More extensive study is necessary to assess potential risk at the population level. © 2011 The Wildlife Society.  相似文献   

5.
Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens to cause extinction. Using 10 microsatellite DNA markers, we compared genetic diversity and structure before and after DFTD outbreaks in three Tasmanian devil populations to assess the genetic consequences of disease-induced population decline. We also used both genetic and demographic data to investigate dispersal patterns in Tasmanian devils along the east coast of Tasmania. We observed a significant increase in inbreeding (FIS pre/post-disease −0.030/0.012, P<0.05; relatedness pre/post-disease 0.011/0.038, P=0.06) in devil populations after just 2–3 generations of disease arrival, but no detectable change in genetic diversity. Furthermore, although there was no subdivision apparent among pre-disease populations (θ=0.005, 95% confidence interval (CI) −0.003 to 0.017), we found significant genetic differentiation among populations post-disease (θ=0.020, 0.010–0.027), apparently driven by a combination of selection and altered dispersal patterns of females in disease-affected populations. We also show that dispersal is male-biased in devils and that dispersal distances follow a typical leptokurtic distribution. Our results show that disease can result in genetic and demographic changes in host populations over few generations and short time scales. Ongoing management of Tasmanian devils must now attempt to maintain genetic variability in this species through actions designed to reverse the detrimental effects of inbreeding and subdivision in disease-affected populations.  相似文献   

6.
Devil facial tumor disease (DFTD) is a transmissible cancer affecting Tasmanian devils Sarcophilus harrisii. The disease has caused severe population declines and is associated with demographic and behavioral changes, including earlier breeding, younger age structures, and reduced dispersal and social interactions. Devils are generally solitary, but social encounters are commonplace when feeding upon large carcasses. DFTD tumors can disfigure the jaw and mouth and so diseased individuals might alter their diets to enable ingestion of alternative foods, to avoid conspecific interactions, or to reduce competition. Using stable isotope analysis (δ13C and δ15N) of whiskers, we tested whether DFTD progression, measured as tumor volume, affected the isotope ratios and isotopic niches of 94 infected Tasmanian devils from six sites in Tasmania, comprising four eucalypt plantations, an area of smallholdings and a national park. Then, using tissue from 10 devils sampled before and after detection of tumors and 8 devils where no tumors were detected, we examined whether mean and standard deviation of δ13C and δ15N of the same individuals changed between healthy and diseased states. δ13C and δ15N values were generally not related to tumor volume in infected devils, though at one site, Freycinet National Park, δ15N values increased significantly as tumor volume increased. Infection with DFTD was not associated with significant changes in the mean or standard deviation of δ13C and δ15N values in individual devils sampled before and after detection of tumors. Our analysis suggests that devils tend to maintain their isotopic niche in the face of DFTD infection and progression, except where ecological conditions facilitate a shift in diets and feeding behaviors, demonstrating that ecological context, alongside disease severity, can modulate the behavioral responses of Tasmanian devils to DFTD.  相似文献   

7.
The Tasmanian devil (Sarcophilus harrisii) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes.  相似文献   

8.
As the number of Tasmanian devils (Sarcophilus harrisii) in captivity increases, an understanding of captive social dynamics and behavior is becoming increasingly important. In the wild, devils are solitary, although sometimes, they congregate to feed on a large carcass. However, it is common to house devils in groups as a form of social enrichment. This study investigated how behavior at feeding time of captive Tasmanian devils varied in groups of different sizes. Observations were made of individually housed devils and devils in groups of two, three, five, and six, when presented with a carcass on which to feed. Total feeding duration ranged from 6.5 to 47.4 minutes per observation period (70 minutes). There was no significant interaction between feeding duration and group size during the experiment. Feeding duration varied daily and depended on carcass size. Social housing of Tasmanian devils enabled them to display dyadic and agonistic behaviors during feeding. Observing behaviors and learning from the outcomes of these interactions can improve husbandry techniques. Creating a captive environment that encourages natural behaviors may enhance survival in the wild following translocation.  相似文献   

9.
The prevalence of infectious diseases in wild and feral carnivores is poorly known in Primorsky Krai, where rare species such as the Amur tiger and the Far East leopard roam. In this study we evaluated the prevalence of seropositivity in feral (cats, dogs) and wild (raccoon dog, badger, American mink, Far Eastern wild cat) carnivores to various pathogens: distemper virus, parvovirus, feline immunodeficiency and feline leukemia virus, feline coronavirus, Toxoplasma gondii, Mycoplasma sp., and Chlamydia sp. It was shown that seropositivity occurred significantly more frequent in feral animals than in wild ones. The highest percentage of seropositive animals was observed in feral dogs. It is these diseases that can be dangerous for the Amur tiger and the Far East leopard, thus affecting their populations.  相似文献   

10.
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.  相似文献   

11.
Age‐related changes in diet have implications for competitive interactions and for predator–prey dynamics, affecting individuals and groups at different life stages. To quantify patterns of variation and ontogenetic change in the diets of Tasmanian devils Sarcophilus harrisii, a threatened marsupial carnivore, we analyzed variation in the stable isotope composition of whisker tissue samples taken from 91 individual devils from Wilmot, Tasmania from December 2014 to February 2017. Both δ13C and δ15N decreased with increasing age in weaned Tasmanian devils, indicating that as they age devils rely less on small mammals and birds, and more on large herbivores. Devils <12 months old had broader group isotopic niches, as estimated by Bayesian standard ellipses (SEAB mode = 1.042) than devils from 12 to 23 months old (mode = 0.541) and devils ≥24 months old (mode = 0.532). Devils <24 months old had broader individual isotopic niches (SEAB mode range 0.492–1.083) than devils ≥24 months old (mode range 0.092–0.240). A decrease in δ15N from the older whisker sections to the more recently grown sections in devils <24 months old likely reflects the period of weaning in this species, as this pattern was not observed in devils ≥24 months old. Our data reveal changes in the isotopic composition of devil whiskers with increasing age, accompanied by a reduction in isotopic variation both among population age classes and within individuals, reflecting the effect of weaning in early life, and a likely shift from an initially diverse diet of small mammals, birds, and invertebrates towards increasing consumption of larger herbivores in adulthood.  相似文献   

12.
Infectious diseases, including transmissible cancers, can have a broad range of impacts on host behaviour, particularly in the latter stages of disease progression. However, the difficulty of early diagnoses makes the study of behavioural influences of disease in wild animals a challenging task. Tasmanian devils (Sarcophilus harrisii) are affected by a transmissible cancer, devil facial tumour disease (DFTD), in which tumours are externally visible as they progress. Using telemetry and mark–recapture datasets, we quantify the impacts of cancer progression on the behaviour of wild devils by assessing how interaction patterns within the social network of a population change with increasing tumour load. The progression of DFTD negatively influences devils'' likelihood of interaction within their network. Infected devils were more active within their network late in the mating season, a pattern with repercussions for DFTD transmission. Our study provides a rare opportunity to quantify and understand the behavioural feedbacks of disease in wildlife and how they may affect transmission and population dynamics in general.  相似文献   

13.

The increased availability of genomic resources for many species has expanded perspectives on problems in conservation by helping to design management strategies for threatened species. Tasmanian devils (Sarcophilus harrisii) are an iconic and endangered marsupial with an intensively managed breeding program aimed at preventing extinction in the wild caused by devil facial tumour disease. Between 2015 and 2017, 85 devils from this program were released to three sites in Tasmania to support wild populations. Of these, 26 were known to have been killed by vehicles shortly after release. A previous analysis indicated that increased generations in captivity was a positive predictor of vehicle strike, with possible behavioural change hypothesised. Here we use 39 resequenced devil genomes to characterise diversity at 35 behaviour-associated genes, which contained 826 single nucleotide polymorphisms (24 were non-synonymous). We tested for a predictor of survival by examining three genes (AVPR1B, OXT and SLC6A4) in 62 released devils with known fates (survived, N?=?39; died, N?=?23), and genome-wide associations via reduced-representation sequencing (1727 single nucleotide polymorphisms [SNPs]), in 55 devils with known fates (survived, N?=?38; died, N?=?17). Overall, there was little evidence of an association between genetic profile and probability of being struck by a vehicle. Despite previous evidence of low genetic diversity in devils, the 35 behaviour-associated genes contained variation that may influence their functions. Our dataset can be used for future research into devil behavioural ecology, and adds to the increasing body of research applying genomics to conservation problems.

  相似文献   

14.
Brown GK  Kreiss A  Lyons AB  Woods GM 《PloS one》2011,6(9):e24475
The Tasmanian devil (Sarcophilus harrisii), the world's largest marsupial carnivore, is under threat of extinction following the emergence of an infectious cancer. Devil facial tumour disease (DFTD) is spread between Tasmanian devils during biting. The disease is consistently fatal and devils succumb without developing a protective immune response. The aim of this study was to determine if Tasmanian devils were capable of forming cytotoxic antitumour responses and develop antibodies against DFTD cells and foreign tumour cells. The two Tasmanian devils immunised with irradiated DFTD cells did not form cytotoxic or humoral responses against DFTD cells, even after multiple immunisations. However, following immunisation with xenogenic K562 cells, devils did produce cytotoxic responses and antibodies against this foreign tumour cell line. The cytotoxicity appeared to occur through the activity of natural killer (NK) cells in an antibody dependent manner. Classical NK cell responses, such as innate killing of DFTD and foreign cancer cells, were not observed. Cells with an NK-like phenotype comprised approximately 4 percent of peripheral blood mononuclear cells. The results of this study suggest that Tasmanian devils have NK cells with functional cytotoxic pathways. Although devil NK cells do not directly recognise DFTD cancer cells, the development of antibody dependent cell-mediated cytotoxicity presents a potential pathway to induce cytotoxic responses against the disease. These findings have positive implications for future DFTD vaccine research.  相似文献   

15.
Sensitive and specific monoclonal antibodies (mAbs) targeting podoplanin (PDPN) are needed for immunohistochemical analyses using formalin-fixed paraffin-embedded tissues because PDPN is known as a lymphatic endothelial cell maker in pathology. Recently, we established anti-PDPN mAbs against many species, such as human, mouse, rat, rabbit, dog, cat, bovine, pig, horse, goat, tiger, alpaca, and Tasmanian devil. However, anti-bear PDPN (bPDPN) has not been established yet. In this study, we immunized mice with bPDPN-overexpressing Chinese hamster ovary (CHO)-K1 (CHO/bPDPN) cells, and screened mAbs against bPDPN using flow cytometry. One of the mAbs, PMab-247 (IgG1, kappa), specifically detected CHO/bPDPN cells by flow cytometry and immunohistochemistry. Our findings suggest the potential usefulness of PMab-247 for the functional analyses of bPDPN.  相似文献   

16.
An electrophoretic comparison of the nematodes Rugopharynx longibursaris and R. omega, both from Macropus rufogriseus in south-eastern Australia, revealed fixed genetic differences at 4.5% of the 23 enzyme loci examined. The electrophoretic data do not therefore reject the null hypothesis that the two taxa are conspecific. R. longibursaris was found in Tasmania and in the western mainland population of M. rufogriseus, while R. omega occurred only in the eastern mainland population. Implications for the taxonomic status of the western host population are considered. Specimens formerly assigned to R. omega, from Thylogale stigmatica from Queensland, were found to differ at 45.0% of enzyme loci from specimens from M. rufogriseus. Morphological examination revealed differences in the shape of the buccal capsule, the position of the deirid, the morphology of the spicule tip and the presence of a gubernaculum. A new species, R. sigma, is erected for specimens from T. stigmatica, T. thetis and T. calabyi.  相似文献   

17.
Threatened by devil facial tumour disease, the Tasmanian devil (Sarcophilus harrisii), a carnivorous marsupial confined to Tasmania, Australia, is the subject of conservation management under the Save the Tasmanian Devil Program. Conservation actions such as captive breeding and translocation may impact upon parasite ecology, presenting risk of increased disease through stress and impaired immunity, and by exposing hosts to parasites to which they are immunologically naïve. Given the importance of parasites to ecosystem function, it has been argued from a biodiversity perspective that parasites should be conserved in their own right. In this review we describe current knowledge, and limitations in our knowledge, of Tasmanian devil parasites. We then discuss the potential for changes in host–parasite interactions as a result of host-population decline and conservation management, both generally and with examples from the Tasmanian devil. The review closes with a recommendation for a systematic evaluation of parasites in captive and wild devils to aid conservation of this host–parasite system in its entirety.  相似文献   

18.
Tasmanian Devil Facial Tumor Disease (DFTD) is a transmissible cancer threatening to cause the extinction of Tasmanian Devils in the wild. The aim of this study was to determine the susceptibility of the DFTD to vincristine. Escalating dosage rates of vincristine (0.05 to 0.136 mg/kg) were given to Tasmanian devils in the early stages of DFTD (n = 8). None of these dosage rates impacted the outcome of the disease. A dosage rate of 0.105 mg/kg, a rate significantly higher than that given in humans or domestic animals, was found to the highest dosage rate that could be administered safely. Signs of toxicity included anorexia, vomiting, diarrhea and neutropenia. Pharmacokinetic studies showed that, as with other species, there was a rapid drop in blood concentration following a rapid intravenous infusion with a high volume of distribution (1.96 L/kg) and a relatively long elimination half life (11 h). Plasma clearance (1.8 ml/min/kg) was slower in the Tasmanian devil than in humans, suggesting that pharmacodynamics and not pharmacokinetics explain the Tasmanian devil’s ability to tolerate high dosage rates of vincristine. While providing base-line data for the use of vincristine in Tasmanian devils and possibly other marsupials with vincristine susceptible cancers, these findings strongly suggest that vincristine will not be effective in the treatment of DFTD.  相似文献   

19.
Top predators cause avoidance behaviours in competitors and prey, which can lead to niche partitioning and facilitate coexistence. We investigate changes in partitioning of the temporal niche in a mammalian community in response to both the rapid decline in abundance of a top predator and its rapid increase, produced by two concurrent natural experiments: 1) the severe decline of the Tasmanian devil due to a transmissible cancer, and 2) the introduction of Tasmanian devils to an island, with subsequent population increase. We focus on devils, two mesopredators and three prey species, allowing us to examine niche partitioning in the context of intra‐ and inter‐specific competition, and predator–prey interactions. The most consistent shift in temporal activity occurred in devils themselves, which were active earlier in the night at high densities, presumably because of heightened intraspecific competition. When devils were rare, their closest competitor, the spotted‐tailed quoll, increased activity in the early part of the night, resulting in increased overlap with the devil's temporal niche and suggesting release from interference competition. The invasive feral cat, another mesopredator, did not shift its temporal activity in response to either decreasing or increasing devil densities. Shifts in temporal activity of the major prey species of devils were stronger in response to rising than to falling devil densities. We infer that the costs associated with not avoiding predators when their density is rising (i.e. death) are higher than the costs of continuing to adopt avoidance behaviours as predator densities fall (i.e. loss of foraging opportunity), so rising predator densities may trigger more rapid shifts. The rapid changes in devil abundance provide a unique framework to test how the non‐lethal effects of top predators affect community‐wide partitioning of temporal niches, revealing that this top predator has an important but varied influence on the diel activity of other species.  相似文献   

20.
Sympatric species can minimise interspecific competition by spatial avoidance or by altering their temporal activity to reduce encounter rates. The Tasmanian devil (Sarcophilus harrisii), the largest carnivorous marsupial, coexists with the smaller spotted‐tailed quoll (Dasyurus maculatus) in Tasmania, Australia. Quolls may be susceptible to interspecific competition from devils, because they utilise similar habitats, consume similar prey species and are displaced by devils at food sources. Such competition might cause quolls to spatially or temporally avoid devils. To investigate whether spatial or temporal avoidance occurred, we deployed GPS collars on sympatric devils and quolls and conducted a camera survey at a site in northwest Tasmania where the devil population was not affected by devil facial tumour disease. GPS tracking coincided with the lactation period when devils and quolls had young in dens and continued until weaning occurred. We found little spatial segregation of home range and core area placement between devils and quolls and among devils. Quolls showed more spatial segregation within the sexes than between them. Devils had larger home ranges than quolls. Male devils had larger home ranges than females, but there was no difference in home range size between the sexes of quolls. Females of both species travelled significantly further per night than did males. There was moderate temporal partitioning between the two species: devil activity peaked after dusk and devils remained active until the early morning, while quoll activity showed distinct peaks around dusk and dawn. In conclusion, quolls did not spatially avoid devils but moderate temporal partitioning occurred. It is plausible that quolls are active at different times of the diel cycle to reduce encountering devils, but further studies are needed to resolve the cause of this temporal partitioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号