首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of juvenile hormone in the haemolymph of larvae of Locusta has been detected by a modified Galleria bioassay and these results are compared with indirect methods of estimating corpus allatum activity. Juvenile hormone is present in the haemolymph during the fourth larval instar except on the last day of the instar, and is absent from the haemolymph of the fifth and final larval instar except on the last day of the instar. Changes in the volumes of the corpora allata simply reflect changes in the growth of the whole insect and are of no value in predicting endocrine activity. Changes in the size of the cells of the corpora allata can be correlated with the presence of juvenile hormone in the haemolymph in the fourth larval instar, but similar changes in cell size occur in the fifth larval instar when no juvenile hormone is present in the haemolymph. The effects of the implantation of corpora allata are unreliable as estimates of corpus allatum activity as isolated corpora allata from fifth instar larvae release juvenile hormone. Indirect methods of measuring corpus allatum activity are thus shown to be unreliable. The Rf value of Locusta juvenile hormone as determined by thin-layer chromatography differs from that of Roeller's juvenile hormone, suggesting that the two hormones might be chemically distinct.  相似文献   

2.
Effects of fenoxycarb at ultralow doses were investigated on juvenile hormone (JH)–regulated parameters in the silkworm, B. mori. Like JH, this non-terpenoid carbamate is able to induce permanent larvae in the last larval instar. However, whereas micrograms of JH are needed to produce this effect, only a few picograms of fenoxycarb are necessary to induce the same effect. The effects of fenoxycarb observed in this study were only visible from day 4 of the last larval instar—that is, when the JH titer has dropped to undetectable levels and JH-repressed physiological parameters would naturally be expressed. We observed that the permanent larvae induced with low doses of fenoxycarb (100 pg/larva) had no 20-hydroxyecdysone (20E) peak. Their prothoracic glands (Pgs) were completely inactive and very weakly sensitive to prothoracicotropic hormone (PTTH). Fenoxycarb at doses of 1 ng/larva also significantly inhibited silk gland growth and coloration, whereas carotenoid content of the hemolymph was maintained at high levels, which could reflect an inhibition of its uptake by the silk glands. Total hemolymph protein levels in last instar larvae were also depressed at these doses. So, it seems that low doses of fenoxycarb are sufficient to maintain in a juvenilized status the physiological parameters that are normally expressed when JH titer has declined. Moreover, from an endocrinological viewpoint, we demonstrated that the corpora allata (CA) are not necessary for fenoxycarb to induce those effects and discussed its possible mode of action. Arch. Insect Biochem. Physiol. 37:178–189, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
The effect of hormone treatments on larvae of the southwestern corn borer, Diatraea grandiosella, was examined to explore endocrine interactions which regulate its mature larval diapause. This species is especially suitable for investigating the endocrine control of larval diapause because it ecdyses from a spotted to an immaculate morph at the onset of diapause, and the immaculate morph may undergo up to three stationary ecdyses during diapause. The response of prediapause larvae to a β-ecdysone injection showed that the larvae have the potential to transform into the immaculate morph early in the final larval instar, but under normal conditions this ecdysis occurs after larvae reach maturity. Since a high rate of pupation occurred among early diapause larvae which received a head ligature, followed 17 days later by a β-ecdysone injection, diapause larvae retain active corpora allata. Since a head ligature prevented diapause larvae from responding to repeated topical applications of a juvenile hormone (JH) mimic or JH 1, the intermediate titer of JH associated with larval diapause may inhibit the synthesis or transport of ecdysiotropin, or its release from the corpora cardiaca. Current results suggest, therefore, that an interaction between the cerebral neurosecretory system and the corpora allata regulates the initiation, maintenance, and termination of this larval diapause.  相似文献   

4.
《Insect Biochemistry》1987,17(1):249-254
The rate of juvenile hormone (JH) biosynthesis by corpora allata-corpora cardiaca complex (CA/CC) during two last larval instars of Galleria mellonella was analysed. The rate of biosynthesis reaches maxima at the beginning of the VIth and VIIth instars. It is markedly reduced before the last larval ecdysis and after the first day of the last larval instar. After passing the second day of the last larval instar CA/CC exhibits again an increased ability for the biosynthesis of JH.The JH esterase activity in CA/CC is very low at the beginning of last larval instar and rapidly increases after the first day of this instar. Beginning on the second day of last larval instar the rate of JH hydrolysis is always higher than the rate of JH synthesis in CA/CC. It is concluded that the secretion of JH by CA/CC is possible until the second day of the last larval instar. After this, JH-acid can be supplied by CA/CC to peripheral tissues.The imaginal wing discs of mobile prepupa exhibit the ability to methylate JH-acid. It is concluded that some elevations of JH titre in G. mellonella haemolymph after the second day of VIIth instar are due in part to JH-acid methyltransferase activity in the imaginal discs.  相似文献   

5.
Summary Pigmentation of last instar larvae of the cabbage armyworm,Mamestra brassicae is of two types: melanin in the cuticle and ommochrome in the epidermis. The latter was found to be primarily xanthommatin. When allatectomy was performed 8 h before head capsule slippage (HCS) in the last larval molt, later ommochrome synthesis was inhibited. Application of juvenile hormone (JH) up to 12 h after HCS (9 h before ecdysis) (activity: methopreneJH I>JH II>JH III) restored ommochrome synthesis. After that time it has less and less effect.Removal of the suboesophageal ganglion from the larvae 8 h before HCS prevented both later ommochrome synthesis and melanization. Melanization of isolated abdomens was restored by implantation of 3 suboesophageal ganglia or injection of melanization and reddish coloration hormone (MRCH) 18 h after HCS. Restoration of ommochrome synthesis required exogenous JH in addition to melanization hormone from suboesophageal ganglion or MRCH. Therefore, melanization appears to be critical for the later onset of ommochrome synthesis even in a larva which has been exposed to JH during the critical period.Abbreviations CC·CA corpora cardiaca-corpora allata complex - JH juvenile hormone - MRCH melanization and reddish coloration hormone - HCS head capsule slippage  相似文献   

6.
Further evidence is presented to demonstrate the involvement of juvenile hormone (JH) in regulating diapause in the final larval stage of the southwestern corn borer. Diatraea grandiosella. JH titres in the haemolymph were measured throughout the entire diapause period. Additional results showed that actively secreting corpora allata are necessary to maintain diapause because allatectomized larvae terminated diapause prematurely. A topical application of JH mimic 2 days after the allatectomy prevented this premature termination of diapause. Intact nervous connections between the brain and the corpora allata were necessary for the maintenance of JH secretion. Other surgical work showed that the brains of nondiapausing larvae exhibited a higher ecdysiotropic activity than those of pre-, early-or mid-diapausing larvae.A single application of a JH mimic was more effective in maintaining a diapause-like state in nondiapausing larvae than were repeated topical applications of C18-JH or an implantation of active corpora allata, suggesting that JH was more rapidly metabolized than was the JH mimic. The oxygen consumption of diapausing larvae which had received repeated topical applications of JH mimic was not significantly elevated over that of the controls indicating that treated larvae maintained a low metabolic rate even though they reverted to the spotted morph. A single application of 0.03 μg JH mimic/larva was sufficient to prolong diapause, thereby confirming that JH is necessary for diapause maintenance.  相似文献   

7.
Molting and metamorphosis are essential events for arthropod development, and juvenile hormone (JH) and its precursors play critical roles for these events. We examined the regulation of JH biosynthesis by the corpora allata (CA) in Bombyx mori, and found that intact brain-corpora cardiaca (CC)–CA complexes produced a smaller amount of JH than that in CC–CA complexes and CA alone throughout the 4th and 5th (last) instar stadium. The smaller amount of synthesis was due to allatostatin-C (AST-C) produced by the brain. The CC synthesized short neuropeptide F (sNPF) that also suppressed the JH synthesis, but only in day 3 4th stadium and after the last larval ecdysis. For the suppression, both peptides prevented the expression of some of the distinct JH biosynthetic enzymes in the mevalonate pathway. Allatotropin (AT) stimulated sNPF expression in the CC of day 1 5th instar stadium, not of day 3 4th; therefore the stage-specific inhibition of JH synthesis by sNPF was partly due to the stimulative action of AT on the sNPF expression besides the stage-specific expression of the sNPF receptors in the CA, the level of which was high in day 2 4th and day 0 5th instar larvae. The cessation of JH biosynthesis in the last instar larvae is a key event to initiate pupal metamorphosis, and both sNPF and AST-C are key factors in shutting down JH synthesis, along with the decline of ecdysone titer and dopamine.  相似文献   

8.
Parasitization by the gregarious larval endoparasitoid Glyptapantles liparidis induces a dramatic increase in the hemolymph juvenile hormone (JH) titer (especially JH III) of its host larva, Lymantria dispar. Here, we investigated the role of the parasitoid larvae in JH synthesis and release by in vitro and in vivo experiments. GC-MS analyses confirmed that the rising hemolymph JH titer coincided with the time at which the parasitoids molt to the second larval instar. Peak values in host hemolymph titers were observed prior to parasitoid emergence, and titers dropped to negligible levels within 24 h after parasitoid emergence. Whole body extracts from excised second instar parasitoids yielded JH III and trace amounts of JH II. The in vitro secretory activity of the corpora allata (CA) of L. dispar larvae was not enhanced by parasitization. When the host's CA were separated by neck ligation, we found elevated JH III titers, but no JH II in the hemolymph of the posterior section, which contained the parasitoids. Parasitoids that were kept in in vitro culture produced and released only JH III. The parasitoids’ ability to secrete JH and to molt independently from their host's molting cycles indicates that at least second instar parasitoids are hormonally self-reliant.  相似文献   

9.
Summary In social insects the expression of caste-specific characters is controlled by juvenile hormone (JH) during definite sensitive periods in preimaginal development. For a number of stingless bee species the existence of such a JH-sensitive period has already been demonstrated. Queen development can be induced by topical JH applications during the cocoon spinning phase of the last larval instar. Neither JH titers nor rates of JH synthesis were known so far for this subfamily of eusocial bees distinguished by a pronounced caste dimorphism. As the pantropically distributed stingless bees with approximately 400 recent species are the largest group of social bees, JH synthesis was studied in one of the species that can be kept under laboratory conditions. An in vitro radiochemical assay was used to measure stage- and caste-specific activities of the corpora allata (CA). For the first time in a eusocial hymenopteran species it was demonstrated how the endocrine system is reacting to trophogenic stimuli capable to induce caste differentiation during larval development. Generally JH synthesis in queen CA was found to be 30–80% higher than in workers during the penultimate and last larval instar, but a strong and distinct caste-specific modulation of JH synthesis was only observed right before the onset of a JH-sensitive period in the cocoon spinning phase of the fifth instar.  相似文献   

10.
Summary The absence of juvenile hormone (JH) at the time of head capsule slippage during the molt to the fifth (final) instar of the tobacco hornworm was found to cause ommochrome (primarily dihydroxanthommatin) synthesis in the epidermis during the first two days after ecdysis. Then synthesis decreased until its transient reappearance during the wandering stage. Either JH-I (ED50=8x10–4 g) or methoprene (ED50=1.4x10–2 g) applied at this critical time during the molt prevented the first synthesis. A comparison of developmental profiles of tryptophan and its metabolites, kynurenine and 3-hydroxykynurenine, in normal and allatectomized wild type larvae showed that JH at this critical time prevented both the conversion of kynurenine to 3-hydroxykynurenine and 3-hydroxykynurenine to ommochromes. A similar study in normal and methoprene-treatedblack mutant larvae showed that only the latter conversion was inhibited by JH. The accumulation of 3-hydroxykynurenine in the epidermis of the JH-treatedblack mutant is thought to be due to the altered tryptophan metabolism in these mutants in previous instars due to lower JH levels. Neither starvation of theblack mutant nor injection of 3-hydroxykynurenine significantly affected ommochrome synthesis by the epidermis. Preliminary studies of the enzymes involved showed that JH at the critical period suppressed the later activity and/or production of kynurenine 3-hydroxylase in the wild type larva, but had little effect on the particulate ommochrome synthetase activity of the epidermis.Abbreviations CA corpora allata - JH juvenile hormone - PTTH prothoracicotropic hormone  相似文献   

11.
Normal rates of juvenile hormone synthesis, cell number and volume of corpora allata were measured in penultimate and final-instar male larvae of Diploptera punctata. The rate of juvenile hormone synthesis per corpus allatum cell was highest on the 4th day of the penultimate stadium, declined slowly for the remainder of that stadium, and rapidly after the first day of the final stadium.Regulation of the corpora allata in final-instar males was studied by experimental manipulation of the corpora allata followed by in vitro radiochemical assay of juvenile hormone synthesis. Nervous inhibition of the corpora allata during the final stadium is suggested by the observation that rates of juvenile hormone synthesis increased following denervation of the corpora allata at the start of the stadium; this operation induced a supernumerary larval instar. Juvenile hormone synthesis by corpora allata denervated at progressively later ages in the final stadium and assayed after 4 days decreased with age at operation. This suggests an increasingly unfavourable humoral environment in the final stadium, which was confirmed by the low rate of juvenile hormone synthesis of adult female corpora allata implanted into final-instar larvae. Thus, inhibitory factors or lack of stimulatory factors in the haemolymph may act with neural inhibition to suppress juvenile hormone synthesis in final-instar males.  相似文献   

12.
The O-methyltransferase, which is responsible for the methylation of farnesoic acid in the corpora allata of Diploptera punctata, is a cytosolic enzyme. The activity of O-methyltransferase closely parallels JH biosynthesis in last instars and adult females. Because allatostatin 4 (AST 4) from D. punctata and callatostatin 5 (CAST 5) from Calliphora vomitoria can inhibit juvenile hormone biosynthesis, their effects on the activity of O-methyltransferase and epoxidase, the enzymes involved in the final two steps of juvenile hormone biosynthesis, were investigated in vitro. AST 4 can inhibit methyltransferase activity whereas CAST 5 stimulates it. AST 4 inhibits epoxidase activity slightly whereas CAST 5 inhibits it significantly (36%). Treatment of corpora allata with farnesoic acid (40 μM) can reverse the inhibitory effect of AST 4 and CAST 5 on JH release by corpora allata. Thus, allatostatins appear to exert their inhibitory effect on JH biosynthesis at least partially through inhibition of the activity of terminal enzymes. Two biosynthetic pathways for the conversion of farnesoic acid to JH may exist in corpora allata of D. punctata: the predominant pathway is farnesoic acid to methyl farnesoate, then to JH whereas the other, representing about 5–10% of total JH production, is farnesoic acid to JH III acid, then to JH.  相似文献   

13.
Abstract A rapid and simple method has been developed for the simultaneous measurement of juvenile hormone (JH) and JH acid synthesized in vitro by larval corpora allata (CA) of the tobacco hornworm, Manduca sexta. An organic solvent partition of incubation medium efficiently separates JH acid from JH, and a radioimmunoassay which recognizes the two moieties equivalently is then employed to quantify each. The change in the biosynthetic product of the CA from JH to JH acid appears to begin slowly at the time of ecdysis to the last (fifth) larval stadium and is not complete until just prior to wandering (day 4). The inclusion of the JH esterase inhibitor S-benzoyl-O-ethyl phosphoramidothiolate in incubations of corpora allata revealed that the activity of JH esterases from the gland parallels gland activity and that significant hydrolysis of newly synthesized JH by these esterases occurs in incubations of glands taken at the beginnings of the fourth and fifth larval stadia. An allatostatin, which is proposed to inhibit the corpus allatum during the time of the change in its product, inhibits both JH I and JH I acid synthesis.  相似文献   

14.
Changes of the prothoracic gland (PGL) diameter and of the corpora allata (CA) volume during the second last and last larval instar, and transplantation experiments as well as juvenile hormone (JH) analogue applications, demonstrate that only an activated PGL seems to be competent to degenerate and that the breakdown of the activated PGL is programmed by the absence of JH for a few days. Then, some days later, at the time of apolysis induction which occurs 7 to 6 days before an ecdysis the breakdown of a programmed PGL is induced by factors present in the haemolymph and it is suggested that β-ecdysone in apolysis-inducing amounts could be responsible for the induction of degeneration. However, PGL-protecting factors released probably from the corpora cardiaca (CC) are capable of partially preventing the breakdown of PGLs that have already been induced to degenerate, and it seems that the actual degeneration process is initiated by the absence of PGL-protecting factors only.  相似文献   

15.
《Insect Biochemistry》1986,16(1):149-155
Regulation of the haemolymph titres of ecdysteroids and the juvenile hormones (JH) during larval-pupal development of the tobacco hornworm, Manduca sexta, involves the interendocrine control of the synthesis of each hormone by the other. Temporal relationships between the ecdysteroid titre peaks in the fourth and early fifth larval instar and the increases in corpora allata (CA) activity at these times suggests that ecdysteroids are evoking the increases. Incubation of brain-corpora cardiaca-corpora allata (Br-CC-CA) complexes and isolated CA from these stages with 20-hydroxyecdysone (20-HE) revealed that 20-HE stimulates CA activity and that it does this indirectly via the Br-CC. The resulting increase in the JH titre after the commitment (first) peak in the fifth instar stimulates the fat body to secrete a factor which appears to be the same as a haemolymph stimulatory factor for the prothoracic glands. This moiety acts as a secondary effector that modulates the activity of the prothoracic glands and thus the ecdysteroid titre. These findings together have begun to elucidate the mechanisms by which the principal developmental hormones in the insect interact to regulate postembryonic development.  相似文献   

16.
Die von Apanteles glomeratus L. parasitierten Raupen von Pieris brassicae zeigen in Abhängigkeit des Parasitierungstermins eine deutliche Veränderung des Juvenilhormon (JH)-Titer-Verlaufs während des letzten Larvenstadiums. Dabei tritt ein steiler Anstieg des JH-Gehaltes der Wirtshämolymphe im Zusammenhang mit der Häutung der Parasitenlarven vom 1. zum 2. Larvenstadium auf. Aufgrund von Ligations-experimenten konnte nachgewiesen werden, daß die Parasitenlarven selbst für den erhöhten JH-Titer ihrer Wirtsraupen verantwortlich sind, indem sie während ihrer Häutungsphase anscheinend JH in die Wirtshämolymphe abgeben.Eine durch die Parasitierung gesteigerte Syntheseaktivität läßt sich aus den Befunden histologischer Schnitte der Corpora allata frühparasitierter Raupen nicht feststellen. Dagegen weisen die Prothoraxdrüsen parasitierter Raupen zur Mitte des letzten Stadiums eine deutlich kleinere Querschnittsfläche auf als unparasitierte Tiere. Eine dadurch im Zusammenhang mit dem erhöhten JH-Titer bestehende Beziehung zur Häutungsunfähigkeit parasitierter Pieris-Raupen am Ende des letzten Larvenstadiums wird diskutiert.
Summary The effects of parasitism by Apanteles glomeratus on the hemolymph juvenile hormone (JH) titers of Pieris brassicae during the last larval instar were determined using the Galleria bioassay.Depending on the time of parasitization, a significant increase of the JH titer could be observed when moulting of the parasites from the first to the second larval instar occurred.As neck-ligatured, parasitized Pieris larvae showed a similar increase of the JH titer at this time, it is concluded that the parasite larvae themselves are responsible for the elevation of the titer by delivering JH during their ecdysis into the host's hemolymph.This is supported by histological results from the corpora allata of parasitized and unparasitized caterpillars at the first and third day of the last larval instar, indicating no differences in its secretory activity. The prothoracid glands of parasitized host larvae, however, appear significantly smaller than those of comparable unparasitized ones in the middle of the last instar. A reduced secretory activity at this time, which is assumed from their decreased size, combined with an elevated JH titer may explain why parasitized larvae fail to moult at the end of their larval development.
  相似文献   

17.
《Insect Biochemistry》1985,15(2):175-179
The effect of varying l-methionine (l-met) concentration on rates of juvenile hormone (JH) biosynthesis/release by corpora allata of females of the viviparous cockroach Diploptera punctata has been studied using a radiochemical assay. Both high activity glands (corpora allata from day 5 females) and low activity glands (corpora allata from day 11 females) were used to study the dose dependence of JH biosynthesis on l-met concentrations, under both de novo (spontaneous) conditions of JH biosynthesis and stimulated conditions (in the presence of the exogenous JH III precursor farnesoic acid). Maximal rates of JH biosynthesis/release were observed at l-met concentration of 20 μM (spontaneous) and 40 μM (stimulated). Below these concentrations, rates of JH biosynthesis declined linearly with decreasing l-met concentration. Optimal concentration of l-met appeared to be similar for both high and low activity corpora allata, under spontaneous and stimulated conditions of biosynthesis. Above 40 μM l-met, no increase in rates of JH biosynthesis was observed. It appears that the corpora allata of D. punctata are efficient scavengers of l-met and are able to utilize even low concentrations of the substrate for JH biosynthesis. The corpora allata of D. punctata may prove useful for the biosynthesis of authentic JH III, radiolabelled in the methyl position using as methyl donor, l[methyl-3H]met of high specific activity.  相似文献   

18.
Juvenile hormone synthesis by adult female corpora allata was inhibited following implantation into final-larval-instar males; inhibition was prevented by decapitation of the larval hosts on day 11 (prior to the head critical period for moulting), but not by decapitation on day 13. Implantation of one larval protocerebrum restored inhibition of implanted corpora allata, demonstrating that the brain releases an inhibitory factor. Corpora allata implanted into larvae decapitated on day 11 were inhibited by injections of 20-hydroxyecdysone. Since treatment of corpora allata with 20-hydroxyecdysone in vitro did not inhibit juvenile hormone synthesis, ecdysteroids probably act indirectly on the corpora allata. Juvenile hormone synthesis and haemolymph ecdysteroid concentration were measured following implantation of corpora allata along with two larval brains into larval hosts. Brain implantation did not affect ecdysteroid concentration, but did inhibit juvenile hormone synthesis, even in animals with low haemolymph ecdysteroid concentration. Incubation with farnesoic acid stimulated juvenile hormone synthesis by corpora allata from males early in the final larval stadium, but not after day 8, showing that one of the final two reactions of juvenile hormone synthesis is rate-limiting in larval corpora allata at this stage. Adult female corpora allata which had been humorally inhibited by implantation into larvae were stimulated by farnesoic acid.  相似文献   

19.
Juvenile hormone (JH) is considered the prime endogenous signal for the induction of queen development in honey bees (Apis mellifera L.). At the beginning of the last (5th) larval stadium, worker corpora allata synthesize less JH than queen corpora allata as a consequence of a limited production of JH precursors and a caste- and stage-specific block of the terminal step in JH biosynthesis. As previously shown, the Manduca sexta allatotropin stimulates JH biosynthesis in honey bee corpora allata in a dose-dependent and reversible manner, but can not overcome the stage-specific block in the terminal step of JH biosynthesis that is typical for worker early 5th instars. In experiments with M. sexta allatotropin and with the JH precursor farnesoic acid, we found characteristic stage-specific differences in their effects on JH biosynthesis. From the end of the spinning stage on, corpora allata could be stimulated by farnesoic acid to a much higher extent than in earlier developmental stages, suggesting a sudden increase in epoxidase activity. Manduca sexta allatotropin, however, stimulated corpora allata activity until the end of the spinning stage, at which time the corpora allata become suddenly insensitive. These data suggest that in worker larvae, important changes in the regulation of the terminal enzymatic steps in JH biosynthesis occur at the transition from the spinning stage to the prepupal stage. However, the analysis of in vitro activities of the involved enzymes, O-methyltransferase and methyl farnesoate epoxidase, remained inconclusive.  相似文献   

20.
The effect of benserazid and 6-OHDA on the duration of the last larval instar and development of wings with intact corpora allata and following allatectomy on Acheta domestica L. was studied. 6-OHDA failed to alter the duration of the last larval instar in the nymphs with intact corpora allata but prolonged it in the allatectomized crickets. Introduction of 6-OHDA in the second phase of the last larval instar caused a deformation of the wings both in allatectomized and intact crickets. Injection of benserazid to the nymphs of the last larval instar prolonged the duration of this phase only in the presence of the corpora allata. The effect of benserazid can be connected to elimination of central inhibition of the corpora allata involving dopaminergic neurons of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号