首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
EcoRI analysis of bacteriophage P22 DNA packaging.   总被引:20,自引:0,他引:20  
Bacteriophage P22 linear DNA molecules are a set of circularly permuted sequences with ends located in a limited region of the physical map. This mature form of the viral chromosome is cut in headful lengths from a concatemeric precursor during DNA encapsulation. Packaging of P22 DNA begins at a specific site, which we have termed pac, and then proceeds sequentially to cut lengths of DNA slightly longer than one complete set of P22 genes (Tye et al., 1974b). The sites of DNA maturation events have been located on the physical map of EcoRI cleavage sites in P22 DNA. EcoRI digestion products of mature P22 wild-type DNA were compared with EcoRI fragments of two deletion and two insertion mutant DNAs. These mutations decrease or increase the length of the genome, but do not alter the DNA encapsulation mechanism. Thus the position of mature molecular ends relative to EcoRI restriction sites is different in each mutant, and comparison of the digests shows which fragments come from the ends of linear molecules. From the positions of the ends of molecules processed in sequential headfuls, the location of pac and the direction of encapsulation relative to the P22 map were deduced. The pac site lies in EcoRI fragment A, 4.1 × 103 base-pairs from EcoRI cleavage site 1. Sequential packaging of the concatemer is initiated at pac and proceeds in the counterclockwise direction relative to the circular map of P22. One-third of the linears in a population are cut from the concatemer at pac, and most packaging sequences do not extend beyond four headfuls.Fragment D is produced by EcoRI cleavage at a site near the end of a linear chromosome which has been encapsulated starting at pac. The position of the pac site is therefore defined by one end of fragment D. The pac site is not located near genes 12 and 18, the only known site for initiation of P22 DNA replication, but lies among late genes at a position on the physical gene map approximately analogous to the cohesive end site (cos) of bacteriophage λ at which λ DNA is cleaved during encapsulation. Our results suggest that P22 and λ DNA maturation mechanisms have many common properties.  相似文献   

2.
The P1 restriction endonuclease (EcoP1) prepared from a P1 lysogen of Escherichia coli makes one double-strand break in simian virus (SV40) DNA. In the presence of cofactors S-adenosylmethionine and ATP the enzyme cleaves 70% of the closed circular SV40 DNA molecules once to produce unit-length linear molecules and renders the remaining 30% resistant to further cleavage. No molecules were found by electron microscopy or by gel electrophoresis that were cleaved more than once. It would appear that the double-strand break is made by two nearly simultaneous single-strand breaks, since no circular DNA molecules containing one single-strand break were found as intermediates during the cleavage reaction. The EcoP1 endonuclease-cleaved linear SV40 DNA molecules are not cleaved at a unique site, as shown by the generation of about 65% circular molecules after denaturation and renaturation. These EcoP1 endonuclease-cleaved, renatured circular molecules are resistant to further cleavage by EcoP1 endonuclease.The EcoP1 endonuclease cleavage sites on SV40 DNA were mapped relative to the partial denaturation map and to the EcoRI and HpaII restriction endonuclease cleavage sites. These maps suggest there are a minimum of four unique but widely spaced cleavage sites at 0.09, 0.19, 0.52, and 0.66 SV40 units relative to the EcoRI site. The frequency of cleavage at any particular site differs from that at another site. If S-adenosylmethionine is omitted from the enzyme reaction mix, SV40 DNA is cleaved into several fragments.An average of 4.6 ± 1 methyl groups are transferred to SV40 DNA from S-adenosylmethionine during the course of a normal reaction containing the cofactors. Under conditions which optimize this methylation, 7 ± 1 methyl groups can be transferred to DNA. This methylation protects most of the molecules from further cleavage. The methyl groups were mapped relative to the Hemophilus influenzae restriction endonuclease fragments. The A fragment receives three to four methyl groups and the B and G fragments each receive one to two methyl groups. These fragments correspond to those in which cleavage sites are located.  相似文献   

3.
Restriction ondonuclease EcoRI was used to study the structure of the free ribosomal DNA molecules from Tetrahymena pyriformis, strain GL. From the following observations we conclude that the free rDNA molecules from Tetrahymena are giant palindromes3, each containing two genes for preribosomal RNA arranged in rotational symmetry as inverted repeating sequences. Analyses of the sizes of products of partial or complete digestion and quantitative analyses of the products of complete digestion of uniformly 32P-labeled rDNA yielded an RI endonucleolytic cleavage map which showed that the EcoRI recognition sites are arranged symmetrically about the center of the rDNA molecule.When heat-denatured rDNA was rapidly cooled under conditions in which no renaturation would occur between separated complementary strands of DNA, molecules of half the size of the original rDNA molecule were produced. These were double-stranded DNA molecules as evidenced by their resistance to digestion with S1 nuclease. Moreover, they could be digested with EcoRI to produce fragments of sizes which would be predicted from the assumption that each single strand of the original rDNA molecule had folded back on itself to form a “hair-pin” double-stranded DNA structure. Hybridization experiments between ribosomal RNA and purified rDNA showed that each rDNA molecule contains two genes for rDNA. Hybridization of the isolated EcoRI fragments of rDNA with 25 S or 17 S rRNA suggested that the two structural genes for 17 S rRNA are located near the center of the rDNA molecule and the two genes for 25 S rRNA are found in distal positions.  相似文献   

4.
A procedure for investigating the possibility of small amounts of partial DNA sequence homology between two defined DNA molecules has been developed and used to test for sequence homology between simian virus 40 and polyoma DNAs. This procedure, which does not necessitate the use of separated viral DNA strands, involves the construction of hybrid DNA molecules containing a simian virus 40 DNA molecule covalently joined to a polyoma DNA molecule, using the sequential action of EcoRI restriction endonuclease and Escherichia coli DNA ligase. Denaturation of such hybrid DNA molecules then makes it possible to examine intramolecularly rather than intermolecularly renatured molecules. Visualization of these intramolecularly renatured “snapback” molecules with duplex regions of homology by electron microscopy reveals a 15% region of weak sequence homology. This region is denatured at about 35 °C below the melting temperature of simian virus 40 DNA and therefore corresponds to about 75% homology. This region was mapped on both the simian virus 40 and polyoma genomes by the use of Hemophilus parainfluenzae II restriction endonuclease cleavage of the simian virus 40 DNA prior to EcoRI cleavage and construction of the hybrid molecule. The 15% region of weak homology maps immediately to the left of the EcoRI restriction endonuclease cleavage site in the simian virus 40 genome and halfway around from the EcoRI restriction endonuclease cleavage site in the polyoma genome.  相似文献   

5.
Duplication of the bacteriophage lambda cohesive end site: genetic studies   总被引:8,自引:0,他引:8  
A derivative of bacteriophage λ has been isolated that contains a duplication of the cohesive end site. To support this conclusion, the duplicated region has bean recovered by segregation from a lysogen of the duplication strain, and a derivative of the duplication strain was constructed that is heterozygous for the λ genes R and A, which bracket the cohesive end site. Duplication strains show no instability during lysogenization, suggesting that the virus particles each contain a single DNA molecule. During lytic growth, however, the strain is unstable and the duplication is frequently lost, even in the absence of all known recombination systems. Loss of the duplication is ascribed to cleavage of both cohesive end sites by the chromosome maturation system. Thus both cohesive end sites are functional, i.e. capable of being cleaved. No transfer of the duplicated region occurs in the absence of the known recombination systems. Thus, during λ chromosome maturation, cleavage of DNA molecules occurs but rejoining of cleaved molecules does not.  相似文献   

6.
A 203 base-pair fragment containing the lac operator/promoter region of Escherichia coli was inserted into the EcoRI site of the plasmid vector pKC7. Rates of restriction endonuclease cleavage of the flanking EcoRI sites and of several other restriction sites on the DNA molecule were then compared in the presence and absence of bound RNA polymerase or lac repressor. The rates were identical whether or not protein had been bound, even for sites as close as 40 base-pairs from a protein binding site. No difference was detected using supercoiled, nicked circular, or linear DNA substrates. No apparent change in the rates of methylation of EcoRI sites by EcoRI methylase was produced by binding the regulatory proteins.  相似文献   

7.
The non-defective (heavy) virions from a simian virus 40-like virus (DAR virus) isolated from human brain have been serially passaged at high input multi-plicities in primary monkey kidney cells. The 32P-labeled, progeny DAR-viral genomes have been purified and tested for sensitivity to the RI restriction endouclease from Escherichia coli (Eco RI3 restriction nuclease). The parental DAR-viral genomes share many physical properties with “standard” simian virus 40 DNA and are cleaved once by the Eco RI restriction nuclease. After the fourth serial passage, three populations of genomes could be distinguished: Eco RI resistant, Eco RI sensitive (one cleavage site) and Eco RI “supersensitive” (three, symmetrically-located, cleavage sites). The Eco RI cleavage product of the “supersensitive” form is one-third the physical size (10.4 S) of simian virus 40 DNA and reassociates about three times more rapidly than sheared, denatured simian virus 40 DNA. From the fourth to the eighth serial passages, the genomes containing this specific triplication of viral DNA sequences were selected for and became the predominant viral DNA species.  相似文献   

8.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

9.
Vicia faba DNA was digested with restriction endonucleases andfractionated on 1% agarose gels. The physical map for EcoRI,BamHI and XbaI cleavage sites in V. faba cytosol rDNA was determinedusing the Southern blot hybridization technique. XbaI and BglIIdigestion or partial EcoRI digestion showed that the lengthof a major repeat unit of V. faba rDNA is 6.7 x 106 daltons.EcoRI and BamHI cleaved this unit into two and five DNA fragments,respectively. (Received April 23, 1981; Accepted July 20, 1981)  相似文献   

10.
A physical map of the streptococcal macrolides, lincomycin, and streptogramin B (MLS) resistance plasmid pDB101 was constructed using six different restriction endonucleases. Ten recognition sites were found for HindIII, seven for HindII, eight for HaeII, and one each for EcoRI, HpaII, and KpnI. The localization of the restriction cleavage sites was determined by double and triple digestions of the plasmid DNA or sequential digestions of partial cleavage products and isolated restriction fragments, and all sites were aligned with a single EcoRI reference site. Plasmid pDB101 meets all requirements essential for a potential molecular cloning vehicle in streptococci; i.e., single restriction sites, a MLS selection marker, and a multiple plasmid copy number. The vector plasmid described here makes it possible to clone selectively any fragment of DNA cleaved with EcoRI, HpaII, or KpnI, or since the sites are close to each other in map position, any combination of two of these restriction enzymes.  相似文献   

11.
Despite the fact that its DNA carries six EcoRI cleavage sites, bacteriophage T5 is able to grow on an EcoRI restricting host, suggesting that it specifies a restriction protection system. In the hope of identifying this protection system, mutants of T5 have been isolated which are unable to grow on an EcoRI restricting host. Analysis of the DNA of such mutants shows that they have each acquired two new EcoRI sites per molecule as a consequence of a single EcoRI site (ris) mutation located in the terminally repetitious, first step transfer (FST) region of the genome. The EcoRI sites generated by the ris mutations differ from the natural EcoRI sites in that the latter are situated on the second step transfer (SST) DNA, which suggests that the in vivo sensitivity of ris mutants is a consequence of having an EcoRI site on the FST DNA. This is understandable, if the hypothetical restriction protection genes are also located on the FST DNA. While expression of these genes would protect natural sites on the SST DNA, the ris sites would, on the contrary, enter an environment in which the protection, products had not yet been synthesized.Construction of double and triple ris mutants has allowed the ordering of the ris sites and the construction of an EcoRI restriction map of the FST region. In addition, the ris mutants allow estimation of the size of the terminal repetition of T5 DNA as 5.9 × 106 to 6.0 × 106 daltons. Correlation of the physical map of the FST region with the already established genetic map of this region allows orientation of the pre-early genes on the genetic and physical maps, and approximate localization of two amber mutations on the physical map.  相似文献   

12.
α-Satellite DNA from African green monkey cells was analysed with restriction nucleases in some detail confirming and complementing our earlier results. With EcoRI and HaeIII (or BsuRI isoschizomer), about 25 and 10%, respectively, of the satellite DNA were cleaved into a series of fragments of the 172 bp repeat length and multiples thereof. To allow studies with fragments of homogeneous sequence unit length, HindIII fragments were covalently joined with the plasmid pBR313. After transformation 19 clones were obtained, containing up to three monomer fragments. Nine of the clones were characterized by digestion with EcoRI. Three of these had cleavage sites for this nuclease in the satellite DNA portion. In the six clones tested with HaeIII no cleavage site was detected in the cloned DNA. The results are discussed in relation to the nucleotide sequence data recently published by Rosenberg et al. (1978) and in the context of random and nonrandom processes in satellite DNA evolution.  相似文献   

13.
The distribution of sites hybridizing with mitochondrial 4 S RNA molecules on mitochondrial DNA of Xenopus laevis has been mapped in relation to the ribosomal RNA genes and EcoRI restriction endonuclease sites. RNA molecules linked to ferritin were employed for this purpose. We have obtained evidence for 15 4 S RNA sites on the H-strand and six sites on the L-strand of X. laevis mtDNA. An indication of the possible existence of one additional site on the H-strand and four additional sites on the L-strand has been obtained. One 4 S RNA site is located in the gap between the two rRNA genes, and one site flanks each outside end of the rRNA genes. The other 4 S RNA sites are distributed almost evenly throughout both strands of the mtDNA. A comparison with the map of 4 S RNA sites on the mtDNA of HeLa cells (Angerer et al., 1976) suggests considerable evolutionary conservation of site organization.  相似文献   

14.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

15.
Sa/I restriction endonuclease maps of FII incompatibility group R plasmids.   总被引:6,自引:0,他引:6  
SalI restriction endonuclease maps of FII incompatibility group R plasmids NR1, NR84, and R6 have been determined by sequential digestion of plasmid DNA with EcoRI and SalI and subsequent analysis of the fragments by electrophoresis on agarose gels. In the composite R plasmid NR1 there are five SalI sites, one in the r-determinants component and four in the RTF-Tc component. SalI cleavage of transitioned NR1 DNA, which contains tandem sequences of the r-determinants in a head-to-tail orientation, produces the five original bands plus a single new amplified band whose mobility on agarose gels corresponds to the monomer r-determinants DNA. NR84 has a total of four SalI sites. It is missing one of the SalI sites near the repA locus. R6 has five SalI sites, four the same as those of NR84, and one additional site within the Km transposon Tn601.  相似文献   

16.
Characterization of small plasmids from Staphylococcus aureus.   总被引:8,自引:0,他引:8  
Small molecular weight plasmids from Staphylococcus aureus were characterized with respect to size, restriction enzyme cleavage pattern and transforming capacity. The plasmids pS194 and pC194 which encode streptomycin and chloramphenicol resistance respectively contained 3.0 and 2.0 megadaltons of DNA as determined by zonal rate centrifugation and electron-microscopy. Both plasmids transformed S. aureus with high efficiency. Plasmid pC194 contained only one cleavage site for endonuclease HindIII and pS194 contained single cleavage sites for HindIII and EcoRI. A natural recombinant between these two plasmids, pSC194, shared the high transforming capacity of the parental plasmids and contained one EcoRI site And two HindIII sites. pSC194 DNA also transformed B. subtilis with high efficiency. The recombinant plasmid pSC194 may be used as an EcoRI vector for construction and propagation of hybrid DNA in S. aureus as shown in the following paper (Löfdahl et al., 1978).  相似文献   

17.
Electron microscopy of negatively stained isolated restriction enzyme EcoRI revealed particle projections with triangular or square outlines, indicating that the enzyme, in its tetrameric state, is tetrahedron-like. The two dimers making up the tetramer appear to be arranged in two planes orthogonal to each other. Complexes formed by EcoRI with the plasmids pBR322 or pGW10 were investigated by electron microscopic spreading techniques. In the presence of Mg2+, EcoRI was bound to the DNA molecules to form pearl necklace-like aggregates. The number of bound EcoRI particles was much higher as the sum of EcoRI-and 5..AATT..3 sites (with exceptions, the 5..AATT..3 sites may function as one type of EcoRI* sites) along the DNAs, indicating unspecific binding. In the absence of Mg2+, EcoRI was bound to the DNA only at the recognition site for EcoRI and the sites where the tetranucleotide sequence 5..AATT..3 was present. A direct correlation of the local concentrations of the bases A and T within the flanking sequences of the binding sites with the frequency of EcoRI to the DNA was observed. Dimers and tetramers of the enzyme was found to bind to the DNA. Tetramers occasionally exhibited two binding sites for DNA as indicated by the observation of DNA loops originating at the sites of bound tetrameric EcoRI particles.Abbreviations BAC Benzyldimethylalkylammoniumchloride - bp base pairs - Kb kilobases - SDS sodium dodecylsulfate Enzymes (EC 3.1.23.13) Restrictionendonuclease EcoRI - (EC 3.1.23.21) Restrictionendonuclease HindIII - (EC 3.1.23.37) Restrictionendonuclease SalGI Dedicated Professor H. G. Schlegel on occasion of this 60th birthday  相似文献   

18.
A facile method for the determination of bacteriophage T4-induced polynucleotide ligase joining activity is described. The assay is based on the ability of polynucleotide ligase to join the cohesive termini of bacteriophage λ DNA covalently. The observance of this activity is greatly facilitated if λ DNA is previously cleaved with the restriction endonuclease EcoRI and the reaction products subsequently analyzed by electrophoresis in ethidium bromide-agarose gel. A purification scheme is presented which offers a reduction in the number of steps required to purify polynucleotide ligase compared to a previously published procedure and yields an enzyme preparation which is suitable for use in in vitro construction of recombinant DNA molecules.  相似文献   

19.
Summary A general method has been developed for the deletion of restriction endonuclease sites in bacterial plasmid DNA. The procedure involves partial digestion of the covalently closed circular plasmid DNA with an appropriate restriction endonuclease under conditions which allow accumulation of unit-length linear DNA molecules, controlled digestion of the exposed 5 ends with the 5-exonuclease, and in vivo recircularization of the resulting linear DNA in a bacterial host cell. The method has been used for the deletion of one of the two EcoRI sites in the plasmid pML2 (colE1-Km). Two of the resulting plasmids, pCR1 and pCR11, have a single EcoRI cleavage site, but retain genetic determinants specifying resistance to colicin E1 and kanamycin, and thus may be useful as vectors for the cloning and amplification of DNA in bacteria.  相似文献   

20.
The EcoP15 restriction endonuclease forms complexes at specific sites on unmodified DNA both in the presence and in the absence of S-adenosyl-l-methionine. ATP acts as an allosteric effector of EcoP15 and induces DNA cleavage followed by release of the enzyme from the DNA. The efficiency of endonucleolytic scission varies from site to site. The nucleotide sequences at sites that are cleaved at a high frequency were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号