首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver mitochondria were incubated in vitro with radioactive leucine, and submitochondrial particles prepared by several methods. Analysis of the labeled mitochondrial membrane fractions by sodium dodecylsulfate gel electrophoresis revealed three labeled bands of molecular weights corresponding to 40,000; 27,000; and 20,000 daltons. Electrophoresis for longer times at higher concentrations of acrylamide revealed eight labeled bands, ranging in molecular weights from 48,000 to 12,000.Mitochondria were incubated for 5 min with [3H]leucine followed by a chase of unlabeled leucine. Gel electrophoresis of the membranes obtained after labeling for 5 min indicated significant synthesis of polypeptides in the 40,000 Mr, range and very little labeling of low molecular-weight polypeptides. After addition of the chase, increased synthesis of the high molecular-weight polypeptides was observed; however, no significant increase or decrease of radioactivity in the bands of low molecular-weight was observed, suggesting that rat liver mitochondria have the ability to synthesize complete proteins in the Mr 27,000–40,000 range.Approximately 16% of the total leucine incorporated into protein by isolated rat liver mitochondria in vitro could be extracted by chloroform: methanol. Gel electrophoresis of the chloroform: methanol extract revealed several bands containing radioactivity with the majority of counts in a band of 40,000 molecular weight. Gel electrophoresis of the chloroform: methanol extract of lyophilized submitochondrial particles indicated label in two broad bands in the low molecular-weight region of 14,000-10,000 with insignificant counts in the higher molecular-weight regions of the gel.Yeast cells were pulse labeled in vivo with [3H]leucine in the presence of cycloheximide and the submitochondrial particles extracted with chloroform:methanol. The extract separated after gel electrophoresis into four labeled bands ranging in molecular weight from 52,000 to 10,000. Preincubation of the yeast cells with chloramphenicol prior to the pulse labeling caused a 6-fold stimulation of labeling into the band of lowest molecular weight of the chloroform: methanol extract. These results suggest that the accumulation of mitochondrial proteins synthesized in the cytoplasm, when chloramphenicol is present in the medium, may stimulate the synthesis of certain specific mitochondrial proteins which are soluble in chloroform: methanol.  相似文献   

2.
3.
4.
An Escherichia coli mutant capable of continued DNA synthesis in the presence of chloramphenicol has been isolated by an autoradiographic technique. The DNA synthesis represents semiconservative replication of E. coli DNA. It can occur in the presence of chloramphenicol or in the absence of essential amino acids, but not in the presence of an RNA synthesis inhibitor, rifampin. The mutant, termed constitutive stable DNA replication (Sdrc) mutant, appears to grow normally at 37 °C with a slightly slower growth rate than that of the parental strain. DNA replication in the mutant occurs at a reduced rate after 60 minutes in the absence of protein synthesis and continues linearly for several hours thereafter. This distinct slowdown in the DNA replication rate is due to a reduced rate of DNA synthesis in all the cells in the population. Constitutive stable DNA replication appears to require the dnaA and dnaC gene products. The sdrc mutation has been mapped near the pro-lac region of the E. coli chromosome. The mutation is recessive. Autoradiographic experiments have ruled out the possibility of multiple initiations during a cell cycle. The implication of the above findings is discussed in terms of the regulation of chromosome replication in E. coli.  相似文献   

5.
6.
The role of the infecting viral strand in the replication of bacteriophage φX174 replicative form DNA was studied by [3H]thymidine pulse-labeling Escherichia coli cells infected with 2H15N density-labeled phage. The products of a round of semi-conservative replicative form replication (in light medium) do not contain the original heavy viral strand by 15 minutes after infection or later in the presence of chloramphenicol. Similar results were obtained at earlier times in the absence of chloramphenicol. We conclude that the parental viral strand need not be conserved in the replicating DNA structure in succeeding rounds of replication.  相似文献   

7.
Isolation and characterization of oat globulin messenger RNA   总被引:4,自引:4,他引:0  
When polyadenylated RNA, isolated from membrane-bound polysomes extracted from developing oat (Avena sativa L.) seeds, was translated in vitro in the rabbit reticulocyte system, two polypeptides of about 58 and 60 kilodaltons were immunoprecipitated by anti-oat globulin antibody. No electrophoretic bands corresponding to the 40 and 20 kilodalton polypeptides of oat globulin were present. However, when in vivo labeled extracts were immunoprecipitated with anti-oat globulin antibody, three groups of polypeptides (60, 40, and 20 kilodaltons) were present. It therefore seems probable that the two large polypeptides (58 and 60 kilodaltons) were precursors of the 40 and 20 kilodalton polypeptides. When the polyadenylated RNA coding for these polypeptides was size fractionated on a sucrose density gradient, it sedimented near the 18S region of the gradient. Translation of the RNA from the gradient fractions and immunoprecipitation of translation products indicated that the template for the 58 to 60 kilodalton `putative' precursors of oat globulin was probably the RNA which was approximately 18S in size.  相似文献   

8.
Using solid-phase `Sandwich' immunoassays we studied DNA-dependent RNA polymerase of spinach chloroplasts with regard to (i) polypeptide composition of the multimeric enzyme; (ii) immunological cross-reaction with Escherichia coli RNA polymerase; (iii) sites of synthesis of polymerase polypeptides. Our main results are as follows. (i) All polypeptides of isolated chloroplast RNA polymerase (150, 145, 110, 102, 80, 75 and 38 kd) are labeled by an antibody-linked polymerase assay (ALPA), i.e., they are immunologically related to subunits of the holoenzyme. On the other hand differences in the patterns of `ALPA-reactive' polypeptides of a crude RNA polymerase fraction and of the purified enzyme preparation indicate partial proteolytic degradation of polymerase polypeptides during purification. Thus the 80- and 75-kd polypeptides, which had been previously considered as true RNA polymerase polypeptides, probably result from partial proteolytic degradation. (ii) The 150- and 145-kd polypeptides show immunochemical similarities with the β and/orβ' subunits of E. coli RNA polymerase. (iii) Results from solidphase immunoassay of in vitro translated products of both chloroplast RNA and poly(A)+ (nuclear) RNA suggest that all chloroplast RNA polymerase polypeptides are coded for by the nucleus.  相似文献   

9.
10.
The synthesis of RNA by chromatin-bound RNA polymerase prepared from sugar beet (Beta vulgaris) root tissue is completely dependent on the presence of a divalent metal (Mg2+ or Mn2+) and the presence of four ribonucleoside triphosphates. Accumulation of labeled acid-insoluble product is inhibited by the addition of RNase and actinomycin D to the reaction. When beet root slices are washed for 25 hours, chromatin-associated RNA polymerase activity increases 7-fold over that of unwashed tissue. This enzyme activity declines with further washing. DNA template availability, as measured by saturating levels of added Escherichia coli RNA polymerase, was also found to follow a pattern similar to that for RNA polymerase. Nearest neighbor frequencies of the RNA synthesized by chromatin isolated from unwashed and washed tissue are different.  相似文献   

11.
Using several natural messenger RNA's—f2 RNA, Qβ RNA, T7 RNA, T4 early mRNA, T4 late mRNA and Escherichia coli RNA—ribosomes isolated from cells either 5 or 12 minutes after T4 infection direct synthesis of only 35 to 70% as much protein as do ribosomes from uninfected cells. However, with poly(U) or formaldehyde-treated f2 RNA message, both types of ribosomes work equally well. Experiments mixing salt-washed ribosomes and initiation factors from these cells show, in agreement with work of others, that the reduction with natural messages is due only to changes in the initiation factors.  相似文献   

12.
In order to evaluate the dependence of the embryo on new mRNA synthesis during the period leading to blastulation, quantitative and qualitative aspects of protein synthesis in developing mouse morulae were investigated using α-amanitin, an inhibitor of RNA polymerase II. Only 1 of 423 early morulae cultured for 27 hr in the presence of 11 μg/ml α-amanitin cavitated, although most progressed as far as fully compacted morulae. About two-thirds of the untreated embryos cavitated during the same period. Incorporation of [35S]methionine into protein was measured at 3- or 4-hr intervals over a 24-hr period and showed a two- to fivefold increase in control embryos. This increase was blocked in the α-amanitin-treated group although initial levels of incorporation were maintained. Total uptake of the amino acid appeared to be unaffected by the inhibitor. RNA synthesis, as measured by [3H]uridine incorporation over the same period, was reduced by between 5 and 52%, and the preblastulation surge in RNA synthesis was also blocked by α-amanitin. Two-dimensional polyacrylamide gel electrophoresis of labeled polypeptides synthesized by the embryos after 24-hr incubation in the presence or absence of the inhibitor revealed three distinct classes of polypeptide. The majority of polypeptides continued to be synthesized in the presence of α-amanitin whereas a small number of polypeptides, the synthesis of which would normally have increased during the development of the morula to the blastocyst, were prevented from doing so. A few polypeptides which normally cease to be synthesized over this period continued to be synthesized in the presence of α-amanitin. It is concluded that, while most of the proteins detectable at the morula stage are synthesized on mRNA templates of relatively long translational life, the general surge in protein synthesis, including the increased synthesis of a few species of polypeptide, are dependent on continuous translational activity.  相似文献   

13.
The polypeptides of the proteolytic rumen bacteriumBacteroides ruminicola R8/4 grown in the presence of either leaf Fraction 1 protein, bovine serum albumin, or Bactocasitone as sole nitrogen source were separated by SDS-polyacrylamide gel electrophoresis. Over 40 polypeptides were resolved; the pattern for organisms grown on Fraction 1 protein was similar but not identical to that of the serum albumin and Bactocasitone-grown bacteria. All the bacterial polypeptides were distinguishable from the polypeptides of Fraction 1 protein (and serum albumin). The stained pattern was the same for organisms sampled at intervals during the growth of a batch culture. After incubation of the growing organisms with [14C]-Fraction 1 protein, all the bacterial polypeptides were labeled. Bacteria grown in the presence of nonlabeled Fraction 1 protein and a mixture of [14C]-labeled amino acids incorporated label into all the polypeptides; the bacteria did not grow in the absence of intact protein, and then virtually no label was incorporated from the amino acid mixture.  相似文献   

14.
Geoffrey C. Owens  Itzhak Ohad 《BBA》1983,722(1):234-241
Thylakoid polypeptide phosphorylation has been studied in vivo and in vitro during plastid differentiation in Chlamydomonas reinhardii y-1. Pulse labeling cells at different stages of greening with [32P]orthophosphate revealed differences in the pattern of protein phosphorylation. In the early phase of greening the 44–47 kDa reaction center II polypeptides were labeled but the 22–24 kDa polypeptides of the light-harvesting chlorophyll ab-protein complex (LHC) were not. Later in the greening, coinciding with the formation of the antenna of Photosystem I and membrane stacking, the converse was found. Furthermore, the 22–24 kDa polypeptides of grana lamellae were less labeled than the same polypeptides found in the corresponding stroma lamellae. Polypeptides in the molecular mass range of 32–34 kDa were phosphorylated at all stages following the onset of greening. Dark-grown cells did not incorporate 32P in vivo or in vitro into the polypeptides present in the residual thylakoids. Similarly, cells greened in the presence of chloramphenicol, in which the synthesis of reaction centers is inhibited, showed no light-stimulated phosphorylation in vitro. However, the residual 32–34 kDa and 44–47 kDa polypeptides found in thylakoids of these cells were phosphorylated in vivo, whereas the LHC polypeptides synthesized in the presence of chloramphenicol were not. Phosphorylation of the LHC polypeptides (22–24 kDa) in these cells occurred if new reaction center polypeptides and all antennae components were formed, following removal of the inhibitor and further incubation of the cells in the light. Phosphorylation of LHC polypeptides was not resumed if active reaction centers were formed in the absence of complete restoration of all antenna components (incubation in the dark or light with addition of cycloheximide). It is concluded that phosphorylation is correlated with the thylakoid polypeptide content and organization.  相似文献   

15.
SP01- and SP82G-infected Bacillus subtilis CU403 divIVBI minicells synthesize 13 easily detectable early RNA species with molecular weights ranging from 60 × 103 to 430 × 103. Comparison of in vivo and in vitro translation of early messenger RNA indicates that five early mRNAs of SP01 are synthesized but not translated unless protein synthesis has been permitted in the infected minicell, providing evidence for a translation control mechanism. A sequential appearance of 48 polypeptides has been determined in SP01-infected minicells. The polypeptides have been grouped into two classes of early polypeptides, i.e. those encoded by early mRNA and three subsequent classes as demonstrated by the analysis of polypeptides synthesized in minicells infected with the SP01 mutants, susF21, susF4 and susF14. Phage capsid proteins are not synthesized in minicells. RNA synthesized in infected minicells is subject to turnover. The individual mRNA species have differing functional stabilities ranging from a loss of only 50% functional activity, in 20 minutes at 37 °C, to loss of over 99% activity.Infection of anucleate minicells has been shown to be a very simple method for comparison of closely related phages (slight differences are detected between SP01- and SP82G-encoded mRNA and polypeptides), detection of polypeptides affected by amber mutations and the analysis of early events in phage development in the absence of host syntheses.  相似文献   

16.
Infection of ultraviolet light-irradiated Escherichia coli with T7 phage in the presence of chloramphenicol results in synthesis of T7 early messenger RNA but not late mRNA. T7 early mRNA accumulates in terms of acid-insoluble, T7 DNA-hybridizable RNA. However, messenger activity of the same RNA decays rapidly with a half-life of about 6.5 minutes at 30 °C when tested for the ability to direct in vitro protein synthesis. This functional decay of T7 early mRNA is attributable to a loss of structural integrity of the RNA. Polyacrylamide-agarose gel electrophoresis shows that T7 early mRNAs are cleaved, generating smaller-size RNAs. Kinetics of the appearance of T7-specific RNA polymerase, one of the early gene products, during normal T7 infection show that the capacity of the cells to produce the enzyme decays very rapidly when early mRNA synthesis is terminated either by rifampicin or by a natural mechanism programmed by T7. Preferential synthesis of late proteins in the presence of chemically stable early mRNA late in T7 infection may be explained by the observed functional decay of early mRNA.  相似文献   

17.
18.
A spectrally pure cytochrome b complex has been isolated from yeast mitochondria and shown to contain seven nonidentical subunits with the following molecular weights: I, 42,000; II, 33,000; III, 27,500; IV, 23,000; V, 15,500; VI, 13,000; and VII, 10,500. In order to determine the intracellular sites of translation of these polypeptides, yeast cells were labeled with [3H]leucine in the presence of specific inhibitors of mitochondrial or cytoplasmic translation. The labeling of subunits I and III was found to be insensitive to cycloheximide but was inhibited by chloramphenicol. Alternatively, subunits IV–VII were labeled in the presence of chloramphenicol but not in the presence of cycloheximide. Since subunit II was not significantly labeled in the presence of either inhibitor, the technique of labeling in vivo with [3H]formate was used to establish its site of biogenesis. Formate is incorporated by mitochondrial, but not cytoplasmic, ribosomes as N-formylmethionine at initiation and is therefore a marker for the products of mitochondrial translation. Subunits I–III were labeled under these conditions whereas the four smallest subunits were not. Taken together, the findings clearly establish that the three largest subunits of the cytochrome b complex are translated on mitochondrial ribosomes and that the four smallest are formed in the cytoplasm. The results also underscore the advantages of using [3H]formate to identify the products of mitochondrial translation.  相似文献   

19.
The rate of polymerization of ribosomal ribonucleic acid chains was estimated for steadily growing cultures of Escherichia coli M.R.E.600, from the kinetics of incorporation of exogenous [5-3H]uracil into completed 23S rRNA molecules. The analytical method of Avery & Midgley (1971) was used. Measurements were made at 37°C, in the presence or the absence of chloramphenicol, in each of three media; enriched broth, glucose–salts or sodium lactate–salts. The rate of chain elongation of 23S rRNA was virtually constant in all media at 37°C, as 24±4 nucleotides added/s. Accelerations in the rate of biosynthesis of rRNA by chloramphenicol in growth-limiting media are due primarily to an increase in the rate of initiation of new RNA chains, up to the rates existing in cultures growing rapidly in broth. Thus, in poorer media, only a small fraction of the available DNA-dependent RNA polymerase molecules are active at any given instant, since the chain-initiation rate is limiting in these conditions. In cultures growing rapidly in enriched broth, antibiotic inhibition caused a rise of some 12% in the rate of incorporation of exogenous uracil into total RNA. This small acceleration was due entirely to the partial stabilization of the mRNA fraction, which accumulated as 14% of the RNA formed after the addition of chloramphenicol. In cultures growing more slowly in glucose–salts or lactate–salts media, chloramphenicol caused an immediate acceleration of two- to three-fold in the overall rate of RNA synthesis. Studies by DNA–RNA hybridization showed that the synthesis of mRNA was accelerated in harmony with the other affected species. However, just over half the mRNA formed after the addition of chloramphenicol quickly decayed to acid-soluble products, whereas the remainder was more stable and accumulated in the cells. The mRNA fraction constituted about 6% of the total cellular RNA after 3h inhibition. A model was suggested to explain the partial stabilization and accumulation of the mRNA fraction and the acceleration in the rate of synthesis of mRNA when chloramphenicol was added to cultures in growth-limiting media.  相似文献   

20.
Ulrike Jehn  Klaus Zetsche 《Planta》1988,173(1):58-60
Cyanelles isolated from the alga Cyanophora paradoxa Korschikoff synthesized cyanelle proteins in vitro. This synthesis was stimulated by light and totally inhibited by chloramphenicol. Cycloheximide had only a small inhibitory effect. Electrophoretic separation of the labelled soluble cyanelle proteins yielded at least 20 discrete polypeptides. The RNA isolated from the cyanelles and the whole cells was successfully translated in a rabbit reticulocyte-lysate system.Abbreviations poly(A)-RNA, poly(A)+RNA nonadenylated, polyadenylated RNA; - SDS sodium dodecyl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号