首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous study, lancemaside A isolated from Codonopsis lanceolata (family Campanulaceae) ameliorated colitis in mice. In this study, the anti‐inflammatory effects of lancemaside A was investigated in lipopolysaccharide (LPS)‐stimulated mice and their peritoneal macrophage cells. Lancemaside A suppressed the production of pro‐inflammatory cytokines, TNF‐α and IL‐1β, in vitro and in vivo. Lancemaside A also down‐regulated inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2), as well as the inflammatory mediators, nitric oxide (NO), and PGE2. Lancemaside A also inhibited the expression of IL‐1 receptor‐associated kinase‐4 (IRAK‐4), the phosphorylation of IKK‐β and IκB‐α, the nuclear translocation of NF‐κB and the activation of mitogen‐activated protein kinases in LPS‐stimulated peritoneal macrophages. Furthermore, lancemaisde A inhibited the interaction between LPS and TLR4, as well as IRAK‐4 expression in peritoneal macrophages. Based on these findings, lancemaside A expressed anti‐inflammatory effects by regulating both the binding of LPS to TLR4 on macrophages. J. Cell. Biochem. 111: 865–871, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Cardiac hypertrophy is not only an adaptational state before heart failure but also is an independent risk factor for ischemia, arrhythmia, and sudden death. However, the direct effects of hypercholesterolemia on the myocardium and mechanisms are not completely understood. It has been demonstrated that peroxisome proliferator‐activated receptor‐γ (PPARγ) ligand agonists attenuate cardiac hypertrophy through anti‐inflammatory effects. The present study investigated the effects of PPARγ agonists on hypercholesterolemia‐dependent, renin‐angiotensin‐system‐related cardiac hypertrophy. The findings showed that left ventricular hypertrophy, eminent cardiomyocyte hypertrophy, and lipid deposits in myocardium were observed in the rats fed a cholesterol‐rich diet for 6 months, while these characteristic pathological alterations and the increase in angiotensin II (ANG II) level and over‐expression of angiotensin II type 1 receptor (AT1R) in the left ventricular tissues induced by the cholesterol‐rich diet were significantly suppressed to equal extents by rosiglitazone and irbesartan. In contrast, expression of angiotensin II type 2 receptor (AT2R) was upregulated by these two drugs. In addition, lipid metabolism was markedly improved. The above findings suggest that the cardioprotection of the PPARγ agonist against cardiac hypertrophy evoked by hypercholesterolemia in rats is mediated partially by the improvement of lipid profile, the reduction of ANG II level in the local tissue along with the downregulation of AT1R expression, and upregulation of AT2R expression. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin‐1 (Trx‐1) is an oxidative stress‐limiting protein with anti‐inflammatory and anti‐apoptotic properties. In contrast, its truncated form (Trx‐80) exerts pro‐inflammatory effects. Here we analyzed whether Trx‐80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro‐inflammatory phenotype. Trx‐80 at 1 µg/ml significantly attenuated the polarization of anti‐inflammatory M2 macrophages induced by exposure to either IL‐4 at 15 ng/ml or IL‐4/IL‐13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL‐10. By contrast, in LPS‐challenged macrophages, Trx‐80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF‐α and MCP‐1. When Trx‐80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL‐4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx‐80. Moreover, the Trx‐80 treatment led to a significantly increased aortic lesion area. The ability of Trx‐80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. J. Cell. Physiol. 228: 1577–1583, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Endothelial cell senescence is a hallmark of vascular aging that predisposes to vascular disease. We aimed to explore the capacity of the renin–angiotensin system (RAS) heptapeptide angiotensin (Ang)‐(1‐7) to counteract human endothelial cell senescence and to identify intracellular pathways mediating its potential protective action. In human umbilical vein endothelial cell (HUVEC) cultures, Ang II promoted cell senescence, as revealed by the enhancement in senescence‐associated galactosidase (SA‐β‐gal+) positive staining, total and telomeric DNA damage, adhesion molecule expression, and human mononuclear adhesion to HUVEC monolayers. By activating the G protein‐coupled receptor Mas, Ang‐(1‐7) inhibited the pro‐senescence action of Ang II, but also of a non‐RAS stressor such as the cytokine IL‐1β. Moreover, Ang‐(1‐7) enhanced endothelial klotho levels, while klotho silencing resulted in the loss of the anti‐senescence action of the heptapeptide. Indeed, both Ang‐(1‐7) and recombinant klotho activated the cytoprotective Nrf2/heme oxygenase‐1 (HO‐1) pathway. The HO‐1 inhibitor tin protoporphyrin IX prevented the anti‐senescence action evoked by Ang‐(1‐7) or recombinant klotho. Overall, the present study identifies Ang‐(1‐7) as an anti‐senescence peptide displaying its protective action beyond the RAS by consecutively activating klotho and Nrf2/HO‐1. Ang‐(1‐7) mimetic drugs may thus prove useful to prevent endothelial cell senescence and its related vascular complications.  相似文献   

5.
6.
Angiotensin II (AngII), a peptide hormone released by adipocytes, can be catabolized by adipose angiotensin-converting enzyme 2 (ACE2) to form Ang(1–7). Co-expression of AngII receptors (AT1 and AT2) and Ang(1–7) receptors (Mas) in adipocytes implies the autocrine regulation of the local angiotensin system upon adipocyte functions, through yet unknown interactive mechanisms. In the present study, we reveal the adipogenic effects of Ang(1–7) through activation of Mas receptor and its subtle interplays with the antiadipogenic AngII-AT1 signaling pathways. Specifically, in human and 3T3-L1 preadipocytes, Ang(1–7)-Mas signaling promotes adipogenesis via activation of PI3K/Akt and inhibition of MAPK kinase/ERK pathways, and Ang(1–7)-Mas antagonizes the antiadipogenic effect of AngII-AT1 by inhibiting the AngII-AT1-triggered MAPK kinase/ERK pathway. The autocrine regulation of the AngII/AT1-ACE2-Ang(1–7)/Mas axis upon adipogenesis has also been revealed. This study suggests the importance of the local regulation of the delicately balanced angiotensin system upon adipogenesis and its potential as a novel therapeutic target for obesity and related metabolic disorders.  相似文献   

7.
CME‐1, a novel water‐soluble polysaccharide purified from Ophiocordyceps sinensis mycelia, has anti‐oxidative, antithrombotic and antitumour properties. In this study, other major attributes of CME‐1, namely anti‐inflammatory and immunomodulatory properties, were investigated. Treating lipopolysaccharide (LPS)‐stimulated RAW 264.7 cells with CME‐1 concentration‐dependently suppressed nitric oxide formation and inducible nitric oxide synthase (iNOS) expression. In the CME‐1‐treated RAW 264.7 cells, LPS‐induced IκBα degradation and the phosphorylation of p65, Akt and mitogen‐activated protein kinases (MAPKs), including extracellular signal‐regulated kinase, c‐Jun N‐terminal kinase and p38, were reduced. Treatment with a protein phosphatase 2A (PP2A)‐specific inhibitor, significantly reversed the CME‐1‐suppressed iNOS expression; IκBα degradation; and p65, Akt and MAPK phosphorylation. PP2A activity up‐regulation and PP2A demethylation reduction were also observed in the cells. Moreover, CME‐1‐induced PP2A activation and its subsequent suppression of LPS‐activated RAW 264.7 cells were diminished by the inhibition of ceramide signals. LPS‐induced reactive oxygen species (ROS) and hydroxyl radical formation were eliminated by treating RAW 264.7 cells with CME‐1. Furthermore, the role of ceramide signalling pathway and anti‐oxidative property were also demonstrated in CME‐1‐mediated inhibition of LPS‐activated primary peritoneal macrophages. In conclusion, CME‐1 suppressed iNOS expression by up‐regulating ceramide‐induced PP2A activation and reducing ROS production in LPS‐stimulated macrophages. CME‐1 is a potential therapeutic agent for treating inflammatory diseases.  相似文献   

8.
9.
Immunization with an altered myelin‐derived peptide (MOG45D) improves recovery from acute CNS insults, partially via recruitment of monocyte‐derived macrophages that locally display a regulatory activity. Here, we investigated the local alterations in the cellular and molecular immunological milieu associated with attenuation of Alzheimer’s disease‐like pathology following immunotherapy. We found that immunization of amyloid precursor protein/presenilin 1 double‐transgenic mice with MOG45D peptide, loaded on dendritic cells, led to a substantial reduction of parenchymal and perivascular amyloid beta (Aβ)‐plaque burden and soluble Aβ(1–42) peptide levels as well as reduced astrogliosis and levels of a key glial scar protein (chondroitin sulphate proteoglycan). These changes were associated with a shift in the local innate immune response, manifested by increased Iba1+/CD45high macrophages that engulfed Aβ, reduced pro‐inflammatory (tumor necrosis factor‐α) and increased anti‐inflammatory (interleukin‐10) cytokines, as well as a significant increase in growth factors (IGF‐1 and TGFβ) in the brain. Furthermore, the levels of matrix metalloproteinase‐9, an enzyme shown to degrade Aβ and is associated with glial scar formation, were significantly elevated in the brain following immunization. Altogether, these results indicate that boosting systemic immune cells leads to a local immunomodulation manifested by elevated levels of anti‐inflammatory cytokines and metalloproteinases that contribute to ameliorating Alzheimer’s disease pathology.  相似文献   

10.
Free fatty acid receptor G protein‐coupled receptor 120 (GPR120) is highly expressed in macrophages and was reported to inhibit lipopolysaccharide (LPS)‐stimulated cytokine expression. Under inflammation, macrophages exhibit striking functional changes, but changes in GPR120 expression and signaling are not known. In this study, the effects of LPS treatment on macrophage GPR120 expression and activation were investigated. The results showed that LPS inhibited GPR120 expression in mouse macrophage cell line Ana‐1 cells. Moreover, LPS treatment inhibited GPR120 expression in mouse alveolar macrophages both in vitro and in vivo. The inhibitory effect of LPS on GPR120 expression was blocked by Toll‐like receptor 4 (TLR4) inhibitor TAK242 and p38 mitogen‐activated protein kinase inhibitor LY222820, but not by ERK1/2 inhibitor U0126 and c‐Jun N‐terminal kinase inhibitor SP600125. LPS‐induced inhibition of GPR120 expression was not attenuated by GPR120 agonists TUG891 and GW9508. TUG891 inhibited the phagocytosis of alveolar macrophages, and LPS treatment counteracted the effects of TUG891 on phagocytosis. These results indicate that pretreatment with LPS inhibits GPR120 expression and activation in macrophages. It is suggested that LPS‐induced inhibition of GPR120 expression is a reaction enhancing the LPS‐induced pro‐inflammatory response of macrophages.  相似文献   

11.
Polyphenols are the major components of many traditional herbal remedies, which exhibit several beneficial effects including anti‐inflammation and antioxidant properties. Src homology region 2 domain‐containing phosphatase‐1 (SHP‐1) is a redox sensitive protein tyrosine phosphatase that negatively influences downstream signalling molecules, such as mitogen‐activated protein kinases, thereby inhibiting inflammatory signalling induced by lipopolysaccharide (LPS). Because a role of transforming growth factor β‐activated kinase‐1 (TAK1) in the upstream regulation of JNK molecule has been well demonstrated, we conjectured that SHP‐1 could mediate the anti‐inflammatory effect of verbascoside through the regulation of TAK‐1/JNK/AP‐1 signalling in the U937 cell line. Our results demonstrate that verbascoside increased the phosphorylation of SHP‐1, by attenuating the activation of TAK‐1/JNK/AP‐1 signalling. This leads to a reduction in the expression and activity of both COX and NOS. Moreover, SHP‐1 depletion deletes verbascoside inhibitory effects on pro‐inflammatory molecules induced by LPS. Our data confirm that SHP‐1 plays a critical role in restoring the physiological mechanisms of inducible proteins such as COX2 and iNOS, and that the down‐regulation of TAK‐1/JNK/AP‐1 signalling by targeting SHP‐1 should be considered as a new therapeutic strategy for the treatment of inflammatory diseases.  相似文献   

12.
Withangulatin A (WA), an active component isolated from Physalis angulata L., has been reported to possess anti‐tumor and trypanocidal activities in model systems via multiple biochemical mechanisms. The aim of this study is to investigate its anti‐inflammatory potential and the possible underlying mechanisms. In the current study, WA significantly suppressed mice T lymphocytes proliferation stimulated with LPS in a dose‐ and time‐dependent manner and inhibited pro‐inflammation cytokines (IL‐2, IFN‐γ, and IL‐6) dramatically. Moreover, WA targeted inhibited COX‐2 expression mediated by MAPKs and NF‐κB nuclear translocation pathways in mice T lymphocytes, and this result was further confirmed by the COX‐1/2 luciferase reporter assay. Intriguingly, administration of WA inhibited the extent of mice ear swelling and decreased pro‐inflammatory cytokines production in mice blood serum. Based on these evidences, WA influences the mice T lymphocytes function through targeted inhibiting COX‐2 expression via MAPKs and NF‐κB nuclear translocation signaling pathways, and this would make WA a strong candidate for further study as an anti‐inflammatory agent. J. Cell. Biochem. 109: 532–541, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Following myocardial infarction, tissue repair is mediated by the recruitment of monocytes and their subsequent differentiation into macrophages. Recent findings have revealed the dynamic changes in the presence of polarized macrophages with pro‐inflammatory (M1) and anti‐inflammatory (M2) properties during the early (acute) and late (chronic) stages of cardiac ischemia. Mesenchymal stem cells (MSCs) delivered into the injured myocardium as reparative cells are subjected to the effects of polarized macrophages and the inflammatory milieu. The present study investigated how cytokines and polarized macrophages associated with pro‐inflammatory (M1) and anti‐inflammatory (M2) responses affect the survival of MSCs. Human MSCs were studied using an in vitro platform with individual and combined M1 and M2 cytokines: IL‐1β, IL‐6, TNF‐α, and IFN‐γ (for M1), and IL‐10, TGF‐β1, TGF‐β3, and VEGF (for M2). In addition, polarization molecules (M1: LPS and IFN‐γ; M2: IL‐4 and IL‐13) and common chemokines (SDF‐1 and MCP‐1) found during inflammation were also studied. Indirect and direct co‐cultures were conducted using M1 and M2 polarized human THP‐1 monocytes. M2 macrophages and their associated cytokines supported the growth of hMSCs, while M1 macrophages and their associated cytokines inhibited the growth of hMSCs in vitro under certain conditions. These data imply that an anti‐inflammatory (M2) environment is more accommodating to the therapeutic hMSCs than a pro‐inflammatory (M1) environment at specific concentrations. J. Cell. Biochem. 114: 220–229, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
15.
G‐protein‐coupled receptor kinase 2 (GRK2) is a member of a kinase family originally discovered for its role in the phosphorylation and desensitization of G‐protein‐coupled receptors. It is expressed in high levels in myeloid cells and its levels are altered in many inflammatory disorders including sepsis. To address the physiological role of myeloid cell‐specific GRK2 in inflammation, we generated mice bearing GRK2 deletion in myeloid cells (GRK2?mye). GRK2?mye mice exhibited exaggerated inflammatory cytokine/chemokine production, and organ injury in response to lipopolysaccharide (LPS, a TLR4 ligand) when compared to wild‐type littermates (GRK2fl/fl). Consistent with this, peritoneal macrophages from GRK2?mye mice showed enhanced inflammatory cytokine levels when stimulated with LPS. Our results further identify TLR4‐induced NF‐κB1p105‐ERK pathway to be selectively regulated by GRK2. LPS‐induced activation of NF‐κB1p105‐MEK‐ERK pathway is significantly enhanced in the GRK2?mye macrophages compared to GRK2fl/fl cells and importantly, inhibition of the p105 and ERK pathways in the GRK2?mye macrophages, limits the enhanced production of LPS‐induced cytokines/chemokines. Taken together, our studies reveal previously undescribed negative regulatory role for GRK2 in TLR4‐induced p105‐ERK pathway as well as in the consequent inflammatory cytokine/chemokine production and endotoxemia in mice. J. Cell. Physiol. 226: 627–637, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Brain injuries as well as neurodegenerative diseases, are associated with neuro‐inflammation characterized by astroglial and microglial activation and/or proliferation. Recently, we reported that lipopolysaccharide (LPS)‐activation of microglia inhibits junctional channels and promotes hemichannels, two connexin43 functions in astrocytes. This opposite regulation is mediated by two pro‐inflammatory cytokines, interleukin‐1 beta and tumor necrosis factor‐alpha, released from activated microglia. Because cannabinoids (CBs) have anti‐inflammatory properties and their receptors are expressed by glial cells, we investigated on primary cortical cultures the effects of CB agonists, methanandamide and synthetic CBs on (i) cytokines released from LPS‐activated microglia and (ii) connexin43 functions in astrocytes subjected to pro‐inflammatory treatments. We observed that CBs inhibited the LPS‐induced release of interleukin‐1 beta and tumor necrosis factor‐alpha from microglia. Moreover, the connexin43 dual regulation evoked by the pro‐inflammatory treatments, was prevented by CB treatments. Pharmacological characterizations of CB actions on astrocytic connexin43 channels revealed that these effects were mainly mediated through CB1 receptors activation, although non‐CB1/CB2 receptors seemed to mediate the action of the methanandamide. Altogether these data demonstrate that in inflammatory situations CBs exert, through the activation of different sub‐types of glial CB receptors, a regulation on two functions of connexin43 channels in astrocytes known to be involved in neuron survival.  相似文献   

17.
The angiotensin AT1 receptor is a seven transmembrane (7TM) receptor, which mediates the regulation of blood pressure. Activation of angiotensin AT1 receptor may lead to impaired insulin signaling indicating crosstalk between angiotensin AT1 receptor and insulin receptor signaling pathways. To elucidate the molecular mechanisms behind this crosstalk, we applied the BRET2 technique to monitor the effect of angiotensin II on the interaction between Rluc8 tagged insulin receptor and GFP2 tagged insulin receptor substrates 1, 4, 5 (IRS1, IRS4, IRS5) and Src homology 2 domain-containing protein (Shc). We demonstrate that angiotensin II reduces the interaction between insulin receptor and IRS1 and IRS4, respectively, while the interaction with Shc is unaffected, and this effect is dependent on Gαq activation. Activation of other Gαq-coupled 7TM receptors led to a similar reduction in insulin receptor and IRS4 interactions whereas Gαs- and Gαi-coupled 7TM receptors had no effect. Furthermore, we used a panel of kinase inhibitors to show that angiotensin II engages different pathways when regulating insulin receptor interactions with IRS1 and IRS4. Angiotensin II inhibited the interaction between insulin receptor and IRS1 through activation of ERK1/2, while the interaction between insulin receptor and IRS4 was partially inhibited through protein kinase C dependent mechanisms. We conclude that the crosstalk between angiotensin AT1 receptor and insulin receptor signaling shows a high degree of specificity, and involves Gαq protein, and activation of distinct kinases. Thus, the BRET2 technique can be used as a platform for studying molecular mechanisms of crosstalk between insulin receptor and 7TM receptors.  相似文献   

18.
Infectious agents such as lipopolysaccharides (LPS) challenge the functional properties of the alveolar‐capillary barrier (ACB) in the lung. In this study, we analyse the site‐specific effects of LPS on the ACB and reveal the effects on the individual cell types and the ACB as a functional unit. Monocultures of H441 epithelial cells and co‐cultures of H441 with endothelial cells cultured on Transwells® were treated with LPS from the apical or basolateral compartment. Barrier properties were analysed by the transepithelial electrical resistance (TEER), by transport assays, and immunostaining and assessment of tight junctional molecules at protein level. Furthermore, pro‐inflammatory cytokines and immune‐modulatory molecules were evaluated by ELISA and semiquantitative real‐time PCR. Liquid chromatography–mass spectrometry‐based proteomics (LS‐MS) was used to identify proteins and effector molecules secreted by endothelial cells in response to LPS. In co‐cultures treated with LPS from the basolateral compartment, we noticed a significant reduction of TEER, increased permeability and induction of pro‐inflammatory cytokines. Conversely, apical treatment did not affect the barrier. No changes were noticed in H441 monoculture upon LPS treatment. However, LPS resulted in an increased expression of pro‐inflammatory cytokines such as IL‐6 in OEC and in turn induced the reduction of TEER and an increase in SP‐A expression in H441 monoculture, and H441/OEC co‐cultures after LPS treatment from basolateral compartment. LS‐MS‐based proteomics revealed factors associated with LPS‐mediated lung injury such as ICAM‐1, VCAM‐1, Angiopoietin 2, complement factors and cathepsin S, emphasizing the role of epithelial–endothelial crosstalk in the ACB in ALI/ARDS.  相似文献   

19.
Seven‐transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β‐arrestins, whose recruitment to the activated receptor is regulated by G protein‐coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal‐regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT1AR) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)‐based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well‐established function in the desensitization of G‐protein activation, GRK2 exerts a strong negative effect on β‐arrestin‐dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2‐dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT1AR, and HEK293 cells expressing other 7TMRs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号