首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Changes in the activity of some enzymes of the tricarboxylic acid cycle during development of sea urchins were investigated. Unfertilized eggs showed substantial activity of citrate synthase, aconitase, NAD- and NADP-specific isocitrate dehydrogenases, fumarase and malate dehydrogenase. During development, the activity of citrate synthase, aconitase, NADP-specific isocitrate dehydrogenase and malate dehydrogenase increases gradually, whereas the activity of fumarase remains rather constant. There is no close correlation between changes in the enzyme activity and the increase in oxygen consumption during development. Citrate synthase, aconitase, NADP-specific isocitrate dehydrogenase are mainly localized in the mitochondrial fraction, whereas fumarase and malate dehydrogenase are present in both mitochondrial and cytosol fractions. The intracellular localization of these enzymes does not change during development. A possible mechanism for the regulation of some enzymes of the tricarboxylic acid cycle in sea urchin eggs is discussed.  相似文献   

2.
Studies on the tricarboxylic acid cycle (TCA cycle) enzymes of Penetrocephalus ganapatii reveal that the TCA cycle is only partially operative, as some of the enzymes at the start of the cycle viz. citrate synthase, aconitase and isocitrate dehydrogenase are found to be low in their activities. The high activities of malate dehydrogenase and fumarase, showing affinity towards a reverse direction, indicate that the TCA cycle operates in the reverse direction resulting in the formation of fumarate. The low succinate dehydrogenase/fumarate reductase ratio suggests that ATP generation may occur at site I of the respiratory chain during the reduction of fumarate into succinate.  相似文献   

3.
High levels of aconitase and fumarase activities were found in Rhodobacter capsulatus E1F1 cells cultured with nitrate as the sole nitrogen source either under light-anaerobic or dark-aerobic conditions. Both activities were strongly and reversibly inhibited in vitro by nitrite or nitric oxide, whereas nitrate or hydroxylamine showed a lower effect. Other enzymes of the tricarboxylic acids cycle such as malate dehydrogenase or isocitrate dehydrogenase were not affected by these nitrogen compounds. When growing on nitrate in the dark R. capsulatus E1F1 cells accumulated nitrite intracellularly, so that an in vivo inhibition of aconitase and fumarase could account for the strong inhibition of growth observed in the presence of nitrite under dark-aerobic conditions.Abbreviations ACO aconitase - FUM fumarase - MDH malate dehydrogenase - ICDH isocitrate dehydrogenase - TCA tricarboxylic acid  相似文献   

4.
The composition and properties of the tricarboxylic acid cycle of the microaerophilic human pathogen Helicobacter pylori were investigated in situ and in cell extracts using [1H]- and [13C]-NMR spectroscopy and spectrophotometry. NMR spectroscopy assays enabled highly specific measurements of some enzyme activities, previously not possible using spectrophotometry, in in situ studies with H. pylori, thus providing the first accurate picture of the complete tricarboxylic acid cycle of the bacterium. The presence, cellular location and kinetic parameters of citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate oxidase, fumarate reductase, fumarase, malate dehydrogenase, and malate synthase activities in H. pylori are described. The absence of other enzyme activities of the cycle, including alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, and succinate dehydrogenase also are shown. The H. pylori tricarboxylic acid cycle appears to be a noncyclic, branched pathway, characteristic of anaerobic metabolism, directed towards the production of succinate in the reductive dicarboxylic acid branch and alpha-ketoglutarate in the oxidative tricarboxylic acid branch. Both branches were metabolically linked by the presence of alpha-ketoglutarate oxidase activity. Under the growth conditions employed, H. pylori did not possess an operational glyoxylate bypass, owing to the absence of isocitrate lyase activity; nor a gamma-aminobutyrate shunt, owing to the absence of both gamma-aminobutyrate transaminase and succinic semialdehyde dehydrogenase activities. The catalytic and regulatory properties of the H. pylori tricarboxylic acid cycle enzymes are discussed by comparing their amino acid sequences with those of other, more extensively studied enzymes.  相似文献   

5.
A comparative study of the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing alpha-ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

6.
Summary The activity of enzymes of the tricarboxylic acid (TAC) and glyoxylate (GC) cycles in Candida parapsilosis (wild type KSh 21 and mutant 337) were studied under different physiological and metabolic conditions. C. parapsilosis differed in most of its enzyme activities from other non-citric acid producing yeasts. Furthermore, pH-value, temperature and age of culture proved to act differently on both strains of the tested organism.The addition of trans-aconitate increased not only the growth but also the activities of citrate synthase and some other enzymes while that of aconitase decreased enormously.The high citrate synthase activity might be connected with the role of citrate in the transport of acetyl groups.Abbreviations CS citrate synthase - AC aconitase - ICDH isocitrate dehydrogenase - GDH glutamate dehydrogenase - Fum fumarase - MDH malate dehydrogenase - ICL isocitrate lyase - MS malate synthase  相似文献   

7.
A comparative study of the enzymes of tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing -ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

8.
Enzymes of general metabolism have been determined in the latex of Papaver somniferum in an attempt to elucidate further the nature of the 1000 g130 min organelles and their role in alkaloid biogenesis. A number of enzymes involved in the glyoxylic acid and tricarboxylic acid cycles have been found, namely, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, malate dehydrogenase and isocitrate lyase. Two enzymes of glycolysis, namely, pyruvate kinase and lactate dehydrogenase, as well as enzymes associated with peroxisomes (glyoxylate reductase, catalase) and lysosomes (arylesterase, acid phosphatase) have been studied. Finally, some enzymes previously reported as occurring in poppy seedlings have been investigated, namely peroxidase, glutamate—oxaloacetate and glutamate-pyruvate transaminases, together with phenylalanine, tyrosine, DOPA and glutamic acid decarboxylases.  相似文献   

9.
The thermostability of four enzymes of the tricarboxylic acid cycle has been studied in the facultative thermophile,Bacillus coagulans. Although isocitrate dehydrogenase appeared to be more temperature-sensitive in whole-cell extracts of cultures grown at 30°C compared with that in cultures grown at 55°C, this difference could be largely eliminated by the removal of cell-wall material. The specific activity of each of the enzymes examined was approximately threefold higher in cultures grown at 55°C than in those grown at 30°C. The maximum temperature, Arrhenius plot and effect of stabilizing agents for each enzyme were examined and found to be independent of growth temperature. Sodium chloride (10% w/v) was an effective protective agent for fumarase, aconitase and malate dehydrogenase. Protection from thermal denaturation of isocitrate dehydrogenase, aconitase and fumarase but not malate dehydrogenase was also given when the enzymes were heated in the presence of their substrates. These results are discussed in light of the generalized theories of facultative thermophily which have been proposed.  相似文献   

10.
The activities of the eight citric acid-cycle enzymes of rat bone-marrow cells were determined along with several other mitochondrial and non-mitochondrial enzymes. Four of the citric acid-cycle enzymes (aconitase, succinyl-CoA thiokinase, α-oxoglutarate dehydrogenase and succinate dehydrogenase) have closely similar low activities; two [isocitrate dehydrogenase (NAD) and citrate synthase] have intermediate activities; the remaining two (malate dehydrogenase and fumarase) have high activities. The other enzymes surveyed also exhibited a spread of three orders of magnitude, the mitochondrial enzymes showing no less variation than the others.  相似文献   

11.
Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.  相似文献   

12.
Enzymes of the tricarboxylic acid (TCA) cycle and glyoxylate pathway were investigated in adults and infective larvae of Ancylostoma ceylanicum and Nippostrongylus brasiliensis, and their activities were compared with those obtained in rat liver. A complete sequence of enzymes of the TCA cycle, with most of them showing activities quite similar to those in the rat liver homogenate, was detected in adults of both species. All the enzymes except fumarase and malate dehydrogenase were located predominantly in mitochondria where they showed a variable distribution of activities between the soluble and the membranes fractions. Malate dehydrogenase and fumarase were found in both the mitochondria and the 9,000-g supernatant fraction. Succinyl CoA synthetase, which was present in minimum activity, appeared rate limiting. Enzymes of the glyoxylate pathway, particularly isocitrate lyase, seemed to aid the functioning of the Krebs cycle by allowing the formation of succinate from isocitrate. The infective larvae of both species also were found equipped with all the enzymes of the Krebs cycle. Nonetheless, only isocitrate lyase of the glyoxylate pathway could be detected in these parasites.  相似文献   

13.
Setaria digitata, a filarial parasite of cattle possesses certain unique characteristics like cyanide insensitivity, and lack of cytochromes. In the present study, we have shown that the parasite has an incomplete tricarboxylic acid cycle with the absence of activities of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthase. However the parasite showed the existence of glyoxylate cycle and phosphoenolpyruvate-succinate pathway. The widely used antifilarial drug diethylcarbamazine caused general inhibition of all enzymes of phosphoenolpyruvate-succinate pathway and glyoxylate cycle except that of fumarase and isocitrate lyase. The results may pave the way for new targets for chemotherapy in the control of filarial parasites.  相似文献   

14.
The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given.  相似文献   

15.
Dissimilatory sulphate reduction with acetate as electron donor   总被引:4,自引:0,他引:4  
Acetate oxidation by sulphate was studied with desulfobacter postgatei. Cell extracts of the organism were found to contain high activities of the following enzymes: citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase, malate dehydrogenase and pyruvate synthase. It is concluded that acetate oxidation with sulphate in D. postgatei proceeds via the citric acid cycle with the synthesis of pyruvate from acetyl CoA and CO2 as an anaplerotic reaction. The apparent Ks for acetate oxidation by D. postgatei as determined in vivo was near 0.2 mM. The apparent Ks for acetate fermentation to methane and CO2 by methanosarcina barkeri was 3 mM. The significantly lower ks for acetate of the sulphate reducer explains why methane formation from acetate in natural habitats is apparently inhibited by sulphate.  相似文献   

16.
L Boquist  I Ericsson 《FEBS letters》1984,178(2):245-248
Considerable variations were found in the in vitro effect of alloxan on mouse liver enzymes associated with the citric acid cycle. The following approximative alloxan concentrations induced 50% inhibition of enzyme activity: 10(-6)M for aconitase, 10(-4)M for NAD-linked isocitrate dehydrogenase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase and fumarase, and 10(-3)M for citrate synthase and NADP-linked isocitrate dehydrogenase. Pyruvate dehydrogenase, succinate dehydrogenase and malate dehydrogenase were not inhibited by 10(-3)M alloxan. The inhibition of aconitase was competitive both when using mouse liver and purified porcine heart enzyme. The Ki values for the purified enzyme in the presence of 5 microM alloxan were 0.22 microM with citrate, 4.0 microM with cis-aconitate and 0.62 microM with isocitrate as substrate. The high sensitivity of aconitase for inhibition by alloxan probably plays a prominent role for the toxic effects of alloxan.  相似文献   

17.
Organization of citric acid cycle enzymes into a multienzyme cluster   总被引:4,自引:0,他引:4  
The possibility that some of the enzymes of the citric acid cycle may be loosely associated into a multienzyme cluster has been investigated using extracts prepared by gentle disruption of cells. Gel filtration and sucrose density gradient centrifugation have shown that five sequential enzymes of the cycle specifically associate into a cluster: fumarase, malate dehydrogenase, citrate synthase, aconitase and isocitrate dehydrogenase. Ultrasonication destroys the abilities of the enzymes to associate. The cluster could catalyse the sequence of reactions leading from fumarate to oxoglutarate and has been found in extracts of several bacterial species as well as rat liver mitochondria.  相似文献   

18.
Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria   总被引:9,自引:0,他引:9  
Sonic oscillation of mitochondria usually leads to the release of a number of Krebs tricarboxylic acid cycle enzymes. These enzymes have, therefore, been referred to as soluble matrix enzymes. In the present report, we show that gentle sonic or osmotic disruption can be used to obtain a mitochondrial preparation where these enzymes appear to be organized in a large complex of proteins. Using citrate synthase as a marker for these enzymes, we show that the proposed complex is easily sedimented at 32,000 X g in 30 min. The exposed citrate synthase in these complexes can be inhibited by its antibody, indicating that the enzymes are not merely entrapped in substrate-permeable vesicles. The effects of pH, temperature, ionic strength, and several metabolites on the ability to obtain the sedimentable citrate synthase have been tested. These studies indicate that the complex is stable at conditions presumed to exist in situ. Electron microscopic studies show that gentle sonic oscillation gives rise to an efflux of mitochondrial matrix contents which tend to remain attached to the original membranes. The sedimentable fraction also contained four other presumably soluble Krebs tricarboxylic acid cycle enzymes: aconitase, NAD+-isocitrate dehydrogenase, fumarase, and malate dehydrogenase.  相似文献   

19.
Changes in the levels of isocitrate lyase, malate synthase, catalase, fumarase, and NADP+-isocitrate dehydrogenase have been investigated during larval development of the free-living soil nematode Caenorhabditis elegans in the presence and absence of Escherichia coli. The specific activities of isocitrate lyase, malate synthase, and catalase are maximal at the time of egg hatching and, thereafter, decline during larval development when larvae feed on E. coli, whereas in the absence of E. coli specific activities of the same enzymes increase for 12 hr and subsequently remain constant. There is, however, no change in specific activity of fumarase or NADP+-isocitrate dehydrogenase during the same developmental period, in either case. Cycloheximide at 100 μM arrests the decline of isocitrate lyase during development of feeding larvae but has no effect upon the appearance of isocitrate lyase during starvation. The latter is true also for 15 mM itaconate. There is inactivation of isocitrate lyase in crude extracts of frozen worms in comparison to that in analogous extracts prepared from freshly harvested nematodes.  相似文献   

20.
The plerocercoids of S. solidus possess a complete sequence of glycolytic and tricarboxylic acid cycle enzymes. The presence of phosphoenolpyruvate carboxykinase and fumarate reductase activity and the relatively low activities of aconitase and isocitrate dehydrogenase suggest that carbon dioxide fixation is an important pathway in this parasite. Carbon balances show that glycogen is the main energy source under both aerobic and anaerobic conditions and there is only a slight Pasteur effect. Aerobically 22·5% of the glycogen catabolized is excreted as acetate and propionate (4:1), anaerobically 70% of the glycogen utilized can be accounted for as acetate and propionate (1:3). The results indicate that anaerobically the plerocercoids fix carbon dioxide and have a partial reversed tricarboxylic acid cycle, whilst under aerobic conditions at least part of the carbohydrate may be oxidized via a functional tricarboxylic acid cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号