首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
New techniques able to monitor the maturation of tissue engineered constructs over time are needed for a more efficient control of developmental parameters. Here, a label‐free fluorescence lifetime imaging (FLIm) approach implemented through a single fiber‐optic interface is reported for nondestructive in situ assessment of vascular biomaterials. Recellularization processes of antigen removed bovine pericardium scaffolds with endothelial cells and mesenchymal stem cells were evaluated on the serous and the fibrous sides of the scaffolds, 2 distinct extracellular matrix niches, over the course of a 7 day culture period. Results indicated that fluorescence lifetime successfully report cell presence resolved from extracellular matrix fluorescence. The recellularization process was more rapid on the serous side than on the fibrous side for both cell types, and endothelial cells expanded faster than mesenchymal stem cells on antigen‐removed bovine pericardium. Fiber‐based FLIm has the potential to become a nondestructive tool for the assessment of tissue maturation by allowing in situ imaging of intraluminal vascular biomaterials.   相似文献   

2.
Two‐photon laser scanning fluorescence microscopy (TPM) has been shown to be advantageous for imaging optically turbid media such as human skin. The ability of performing three‐dimensional imaging without presectioning of the samples makes the technique not only suitable for noninvasive diagnostics but also for studies of topical delivery of xenobiotics. Here, TPM is used as a method to visualize both autofluorescent and exogenous fluorophores in skin. Samples exposed to sulforhodamine B have been scanned from two directions to investigate attenuation effects. It is shown that optical effects play a major role. Thus, TPM is excellent for visualizing the localization and distribution of fluorophores in human skin, although quantification might be difficult. Furthermore, an image‐analysis algorithm has been implemented to facilitate interpretation of TPM images of autofluorescent features of nonmelanoma skin cancer obtained ex vivo. The algorithm was designed to detect cell nuclei and currently has a sensitivity and specificity of 82% and 78% to single cell nuclei. However, in order to detect multinucleated cells, the algorithm needs further development. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The tremendous enhancement factors that surface‐enhanced Raman scattering (SERS) possesses coupled with the flexibility of photonic crystal fibers (PCFs) pave the way to a new generation of ultrasensitive biosensors. Thanks to the unique structure of PCFs, which allows direct incorporation of an analyte into the axially aligned air channels, interaction between the analyte and excitation light could be increased many folds leading to flexible, reliable and sensitive probes that can be used in preclinical or clinical biosensing. SERS‐active PCF probes provide unique opportunity to develop an opto‐fluidic liquid biopsy needle sensor that enables one‐step integrated sample collection and testing for disease diagnosis. Specificity being a key parameter to biosensors, the PCF inside the biopsy needle could be functionalized with targeting moieties to detect specific biomarkers. In this review article, we present some of the most promising recent biosensors based on PCFs including hollow‐core PCFs, suspended‐core PCFs and side‐channel PCFs. We provide a wide range of applications of such platform using Raman spectroscopy, label free SERS or labeled SERS detection and analyze some of the main challenges to be addressed for translating it to a clinically viable next generation sensitive biopsy needle sensing probe.  相似文献   

4.
Amyloid fibrils are a well‐recognized hallmark of neurodegeneration. A common approach to detect amyloid fibrils is staining with organic molecules and monitoring optical properties using fluorescence spectroscopy. However, the structural diversity of amyloids necessitates new sensitive methods and probes that can be reliably used to characterize them. Here, Coumarin 307 is applied for lysozyme fibrils detection by observation of laser action in the process of two‐photon excited stimulated emission. It is shown that the lasing threshold and spectrum significantly depend on the adopted structure (α‐helix or β‐sheet) of the lysozyme protein, whereas fluorescence spectrum is insensitive to the protein structure. The applications of coherent stimulated emission light that can be emitted deep inside a scattering medium can be particularly promising for imaging and therapeutic purposes in the neurodegeneration field. Two‐photon excitation with the near‐infrared light, which allows the deepest penetration of tissues, is an important advantage of the method.  相似文献   

5.
We report on wide‐field time‐correlated single photon counting (TCSPC)‐based fluorescence lifetime imaging microscopy (FLIM) with lightsheet illumination. A pulsed diode laser is used for excitation, and a crossed delay line anode image intensifier, effectively a single‐photon sensitive camera, is used to record the position and arrival time of the photons with picosecond time resolution, combining low illumination intensity of microwatts with wide‐field data collection. We pair this detector with the lightsheet illumination technique, and apply it to 3D FLIM imaging of dye gradients in human cancer cell spheroids, and C. elegans.  相似文献   

6.
Tissue autofluorescence provides fluorescence lifetime contrast between acellular tissue and that containing newly seeded cells. Fiber‐based fluorescence lifetime imaging (FLIm) can be used for tracking recellularization of engineered vascular grafts and potential matrix remodeling at large scale, without compromising sample integrity. FLIm cellular contrast was verified in a subset of samples seeded with eGFP‐labelled cells. Results suggests fiberbased FLIm is a suitable tool for monitoring recellularization of engineered tissue nondestructively. Further details can be found in the article by Alba Alfonso‐Garcia, Jeny Shklover, Benjamin E. Sherlock, et al. ( e201700391 ).

  相似文献   


7.
Time‐correlated single photon counting is the “gold‐standard” method for fluorescence lifetime measurements and has demonstrated potential for clinical deployment. However, the translation of the technology into clinic is hindered by the use of ultrasensitive detectors, which make the fluorescence acquisition impractical with bright lighting conditions such as in clinical settings. We address this limitation by interleaving periodic fluorescence detection with synchronous out‐of‐phase externally modulated light source, thus guaranteeing specimen illumination and a fluorescence signal free from bright background light upon temporal separation. Fluorescence lifetime maps are generated in real‐time from single‐point measurements by tracking a reference beam and using the phasor approach. We demonstrate the feasibility and practicality of this technique in a number of biological specimens, including real‐time mapping of degraded articular cartilage. This method is compatible and can be integrated with existing clinical microscopic, endoscopic and robotic modalities, thus offering a new pathway towards label‐free diagnostics and surgical guidance in a number of clinical applications.  相似文献   

8.
Conventionally Surface‐enhanced Raman spectroscopy (SERS) is realized by adsorbing analytes onto nano‐roughened planar substrate coated with noble metals (silver or gold) or their colloidal nanoparticles (NPs). Nanoscale irregularities in such substrates/NPs could lead to SERS sensors with poor reproducibility and repeatability. Herein, we demonstrate a suspended core photonic crystal fiber (PCF) based SERS sensor with extremely high reproducibility and repeatability in measurement with a relative SD of only 1.5% and 4.6%, respectively, which makes it more reliable than any existing SERS sensor platforms. In addition, our platform could improve the detection sensitivity owing to the increased interaction area between the guided light and the analyte, which is incorporated into the holes that runs along the length of the PCF. Numerical calculation established the significance of the interplay between light coupling efficiency and evanescent field distribution, which could eventually determine the sensitivity and reliability of the developed SERS active‐PCF sensor. As a proof of concept, using this sensor, we demonstrated the detection of haptoglobin, a biomarker for ovarian cancer, contained within the ovarian cyst fluid, which facilitated in differentiating the stages of cancer. We envision that with necessary refinements, this platform could potentially be translated as a next‐generation highly sensitive SERS‐active opto‐fluidic biopsy needle for the detection of biomarkers in body fluids.  相似文献   

9.
In recent years, two‐photon fluorescence microscopy has gained significant interest in bioimaging. It allows the visualization of deeply buried inhomogeneities in tissues. The near‐infrared (NIR) dyes are also used for deep tissue imaging. Indocyanine green (ICG) is the only U.S. Food and Drug Administration (FDA) approved exogenous contrast agent in the NIR region for clinical applications. However, despite its potential candidature, it had never been used as a two‐photon contrast agent for biomedical imaging applications. This letter provides an insight into the scope and application of the two‐photon excitation property of ICG to the second excited singlet (S2) state in aqueous solution. Furthermore, in this work, we demonstrate the two‐photon cellular imaging application of ICG using direct fluorescence emission from S2 state for the first time. Our results show that two‐photon excitation to S2 state of ICG could be achieved with approximately 790 nm wavelength of femtosecond laser, which lies in well‐known “tissue‐optical window.” This property would enable light to penetrate much deeper in the turbid medium such as biological tissues. Thus, ICG could be used as the first FDA approved NIR exogenous contrast agent for two‐photon imaging. These findings can make remarkable influence on preclinical and clinical cell imaging.   相似文献   

10.
One‐photon absorption based traditional laser treatment may not necessarily be selective at the microscopic level, thus could result in un‐intended tissue damage. Our objective is to test whether two‐photon absorption (TPA) could provide highly targeted tissue alteration of specific region of interest without damaging surrounding tissues. TPA based laser treatments (785 nm, 140 fs pulse width, 90 MHz) were performed on ex vivo mouse skin using different average power levels and irradiation times. Reflectance confocal microscopy (RCM) and combined second‐harmonic‐generation (SHG) and two‐photon fluorescence (TPF) imaging channels were used to image before, during, and after each laser treatment. The skin was fixed, sectioned and H & E stained after each experiment for histological assessment of tissue alterations and for comparison with the non‐invasive imaging assessments. Localized destruction of dermal fibers was observed without discernible epidermal damage on both RCM and SHG + TPF images for all the experiments. RCM and SHG + TPF images correlated well with conventional histological examination. This work demonstrated that TPA‐based light treatment provides highly localized intradermal tissue alteration. With further studies on optimizing laser treatment parameters, this two‐photon absorption photothermolysis method could potentially be applied in clinical dermatology. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号