首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Blowfly proboscis extension during stimulation of labellar sugar receptors can be inhibited by the presence of salt. The possibility that the salt receptor might initiate a central nervous inhibitory state is investigated behaviourally and electrophysiologically using simultaneous recordings from labellar chemoreceptors and the extensor muscle of the haustellum. While a mixture of 100 mM sucrose and 4 M NaCl applied to a single sensillum does cause inhibition, the same compounds applied separately simultaneously on separate sensilla do not. A mixture of 100 mM sucrose and 4 M NaCl does not produce central nervous effects such as motor response decrement to repeated stimulation; nor does it produce an enhanced motor response resulting from cross-channel summation when applied simultaneously with 100 mM sucrose on another sensillum. These results argue that the inhibitory effect of mixtures containing sugar and salt can be explained by inhibition of the sugar receptor without having to invoke a central inhibitory mechanism.  相似文献   

2.
Using conventional electrophysiological methods, the galeal sensilla chaetica of the honey bee, Apis mellifera, responded linearly to the log of solute concentrations of sucrose, glucose, fructose, NaCl, KCl, and LiCl but not to CaCl2 or MgCl2, which failed to give consistent responses. These sensillae had much higher firing rates for sugar than salt solutions; their relative responses to lower concentrations being NaCl < KCl < LiCl ? fructose < glucose ? sucrose. At higher concentrations NaCl < LiCl < KCl ? glucose < fructose ? sucrose. Four different spike types were seen. The first type had the highest amplitude and resulted from sugar stimulation. The second type had a lower height and occurred in the first 30 sec of salt stimulation. A third type with the lowest height appeared with those of the second type after prolonged stimulation with KCl. A fourth type with a high amplitude resulted from mechanical stimulation. The sensilla adapted to sugar solutions linearly to the logarithm of time and non-linearly to the log of salt concentrations. Glucose-fructose mixed-sugar solution effected synergism of response while sucrose solutions caused inhibition when mixed with glucose and/or fructose. Responses of the sensilla to mechanical stimulation showed phasic-tonic characteristics. None of the sensilla tested responded to water.  相似文献   

3.
ABSTRACT. The sensilla chaetica on segments II, III and IV of honey-bee labial palps were investigated electrophysiologically. The responses (spikes/s) correlated with the log of the concentrations of sucrose, glucose, fructose, NaCl, KCl and LiCl, but not with CaCl2 or MgCl2, which gave inconsistent responses. The firing rates were higher and thresholds lower to the sugars than to the electrolytes. The sensitivity of the segments fell in the order: III > II > IV for most of the stimulants, which elicited responses in the order: sucrose > glucose = fructose' KCl > LiCl > NaCl. The sensilla adapted logarithmically with time. No synergism of response was noted when mixed-sugar solutions were applied, but inhibition of response was seen when glucose–sucrose, fructose–sucrose, and glucose–fructose–sucrose mixtures were applied. None of the sensilla tested responded to water.  相似文献   

4.
The occurrence of salt‐, sugar‐sensitive neurones and a mechanoreceptor neurone in the antennal hair‐like gustatory sensilla of the click beetle Agriotes obscurus L. (Coleoptera, Elateridae) is demonstrated using the electrophysiological sensillum tip‐recording technique. The stimulating effect of 13 water soluble sugars at 100 mm is tested on the neurones of these sensilla. Sucrose and fructose are the two most stimulating sugars for the sugar‐sensitive neurone, evoking almost 30 spikes s?1 at 100 mm . The stimulating effect of arabinose, glucose, mannose, maltose and raffinose is three‐ to five‐fold lower, in the range 5.9–9.6 spikes s?1. The remaining six sugars, xylose, galactose, rhamnose, cellobiose, trehalose and lactose, have very low (<1 spikes s?1) or no ability to stimulate the sugar‐sensitive neurone. Concentration/response curves of the sugar‐sensitive neurone to sucrose, fructose and glucose at 0.01–100 mm overlap to a large extent in hibernating, cold reactivated and reproductively‐active beetles. A remarkable 9–50% decrease in the number of spikes evoked by 100 mm fructose and 10–100 mm sucrose occurs, however, in reproductively‐active beetles in June compared with beetles at the beginning of hibernation in October. These findings show that A. obscurus is capable of sensing a wide range sugars via their antennal gustatory sensilla.  相似文献   

5.
Abstract Recordings from the tarsal contact chemoreceptor D-sensilla of the cherry fruit fly (Rhagoletis cerasi, Dipt., Tephritidae) revealed the presence of a cell which had a variable sensitivity spectrum. In about 60% of the sensilla of freshly emerged flies this cell was found to be very sensitive to sodium and to a lesser degree to lithium cations. Potassium and other alkali cations were non-stimulatory. The anions tested, Cl-, F-, Br, NO3-, and CO3-, had no effect on the response to sodium. The same Na+-sensitive receptor cells fired in response to stimulation with sucrose plus NaCl or sucrose plus KCI mixtures and were therefore considered to be sugar cells. This was confirmed by cross-adaptation experiments using NaCl, and sucrose dissolved in dilute NaCl or KCI. However, the two adaptive stimuli were not acting symmetrically: NaCl did inhibit the following stimulation with sucrose, whereas sucrose had no effect on the subsequent NaCl stimulation. The response to sucrose and NaCl were not additive, sucrose being apparently, in some sensilla, inhibitory to the stimulation by NaCl. This observation, the lack of symmetry in adaptation, as well as the fact that only a proportion of the sensilla were sensitive to NaCl, seems to indicate that sodium had a different stimulating mechanism than sucrose. In most sensilla of flies older than 24 h, the Na+ sensitivity of the sugar cell was either reduced or completely lost. Behavioural observations of cherry fruit flies during the first 3 ½ days of adult life revealed that the flies fed little or not at all in the first 12 h. Thus the pronounced sodium sensitivity of the sugar cell early in adult life seems not to be correlated with a specific need for sodium intake but may have some role in the functioning of the sugar cell.  相似文献   

6.
The chemoreceptor spike activity in response to sucrose in the concentration range 1-500mM was recorded from each of the 11 Intermediate and 13 Large labellar sensilla in the blowfly Protophormia terraenovae. The results showed that: (1) three of the four cells present in each sensillum are activated by sucrose stimulation; (2) differences between the Large and Intermediate types exist in the dose-response profiles of one of these cells (the 'water' cell), possibly reflecting different sugar receptor site populations on the dendritic membranes of homologous cells in the two types; (3) sensilla of both types are differentially responsive to sucrose solutions according to their location on the labellum. These differences may provide elements for a spatial representation of the stimulus source within the sensory coding process.  相似文献   

7.
Gypsy moth larvae are polyphagous feeders. The electrophysiological responses of the medial and lateral styloconic sensilla to four secondary compounds (e.g., alkaloids), two carbohydrates, and one inorganic salt were examined using an extracellular tip-recording method. In the medial sensillum, one taste receptor cell responded to the alkaloids, strychnine, caffeine, nicotine, and aristolochic acid (i.e., deterrent-sensitive cell), while another, responded to the sugar alcohol and inositol (inositol-sensitive cell). In both medial and lateral sensilla, two taste receptor cells in each sensillum responded minimally and sporadically to 30?mM potassium chloride (KCl) (i.e., KCl-sensitive cells); one cell produced much larger amplitude action potentials than the other. In the medial sensillum, only the large-amplitude KCl-sensitive cell exhibited an increased firing rate with increasing salt concentration. When binary mixture experiments were conducted, it was confirmed that the large-amplitude KCl-sensitive cell and the deterrent-sensitive cell in the medial sensillum were one in the same cell. Only a single cell in the lateral sensillum responded to the sugar, sucrose (sucrose-sensitive cell). The temporal dynamics of responses of the deterrent-sensitive, sucrose-sensitive, and inositol-sensitive cells were compared. Concentration?Cresponse data were obtained for the deterrent-sensitive cell to various alkaloids, as well as to KCl.  相似文献   

8.
By single sensillum tip recording technique, in addition to the salt and pH cells found in antennal taste sensilla of some ground beetles earlier, the third chemosensory cell of four innervating these large sensilla was electrophysiologically identified as a sugar cell in the ground beetle Pterostichus aethiops. This cell generated action potentials of considerably smaller amplitude than those of the salt and pH cells, and phasic-tonically responded to sucrose and glucose over the range of 1-1000 mM tested. Responses were concentration dependent, with sucrose generating more spikes than glucose. During the first second of the response, maximum rates of firing of the sugar cell reached up to 19 and 37 imp/s when stimulated with 1000 mM glucose and sucrose, respectively. Three to four seconds later, the responses decreased close to zero. Both sugars are important in plant carbohydrate metabolism. These ground dwelling insects may come into contact with live and decayed plant material everywhere in their habitat including their preferred overwintering sites in brown-rot decayed wood. In conclusion, we hypothesize that high content of soluble sugars in their overwintering sites and refugia is unfavourable for these ground beetles, most probably to avoid contact with dangerous fungi.  相似文献   

9.
In Drosophila, gustatory receptor neurons (GRNs) occur within hair-like structures called sensilla. Most taste sensilla house four GRNs, which have been named according to their preferred sensitivity to basic stimuli: water (W cell), sugars (S cell), salt at low concentration (L1 cell), and salt at high concentration (L2 cell). Labellar taste sensilla are classified into three types, l-, s-, and i-type, according to their length and location. Of these, l- and s-type labellar sensilla possess these four cells, but most i-type sensilla house only two GRNs. In i-type sensilla, we demonstrate here that the first GRN responds to sugar and to low concentrations of salt (10-50 mM NaCl). The second GRN detects a range of bitter compounds, among which strychnine is the most potent; and also to salt at high concentrations (over 400 mM NaCl). Neither type of GRN responds to water. The detection of feeding stimulants in i-type sensilla appears to be performed by one GRN with the combined properties of S+L1 cells, while the other GRN detects feeding inhibitors in a similar manner to bitter-sensitive L2 cells on the legs. These sensilla thus house two GRNs having an antagonistic effect on behavior, suggesting that the expression of taste receptors is segregated across them accordingly.  相似文献   

10.
Chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea and other leguminous plants, stimulates the growth of roots in a variety of plants. In the present work, we introduce CSI as a sugar taste substance for the blowfly, Phormia regina. The blowfly has taste chemosensilla on the labellum. The sensory receptor cells in the chemosensillum are highly specialized for the tastes of sugar, salt and water, respectively. Application of CSI induced the feeding response of blowflies including full proboscis extension. CSI also induced impulses of the sugar taste receptor cell in the LL-type sensillum. The optimum concentration of CSI in these responses was 0.1 mM which is much lower than that of sucrose. Based on the comparison of dose-response relationships, CSI is 100 times more effective than sucrose in stimulating the sugar taste receptor cells. CSI-induced impulses appeared after a significant latency compared with sucrose. As far as we know, this is the first report describing that a natural saponin induces sugar responses in insects. CSI is a unique saponin because of its bifunctional property in plants and insects.  相似文献   

11.
The activity of the tarsal sugar receptor is greatly reduced following prolonged water exposure. The animal's behavior, which characteristícally reflects receptor input, also shows decreased acceptance of sucrose solutions following prolonged tarsal immersion in deionized water. Long exposure of the tarsi to Bodenstein's saline instead of water does not produce as large a decrement in the acceptance response as does water exposure.Recovery of the behavioral response occurs spontaneously after a few hours. The original response level can also be restored immediately if a moderate concentration (0.05 to 0.2 M) of KCl or NaCl is added to the sucrose stimulus. The effect of LiCl is ambiguous: it inhibits the normal sucrose response, thereby tending to mask any restorative effects. The electrophysiological data show that the cellular response level is also restored when Na+ or K+ ions are present in the stimulus.The above data are interpreted to mean that the effect of tarsal water exposure is to slowly leach out ions in the effective extracellular fluid surrounding the receptor membrane, thus lowering the membrane potential and deceasing the receptor potential upon stimulation. The fact that Na+ and K+ when supplied in the stimulating solution temporarily restore the original response level suggests that these extrinsically added ions can be used as current carrying ions to depolarize the cell. The data suggest that the sensillum contains three functional compartments interconnected by partial diffusion barriers: (1) a ‘receptor compartment’ (2) an axial cylinder which contains the dendrites and functions as the immediate extracellular ion source, and (3) a larger axial cylinder which serves as an ion reservoir.A method for statistically analyzing behavioral acceptance data is presented.  相似文献   

12.
Summary The proboscis extension reponse of the blowfly during stimulation of the tarsal sugar receptors was inhibited by the presence of NaCl. Acceptance thresholds for sucrose in various concentrations of NaCl were measured. The median acceptance thresholds for sucrose in mixtures of 0.01, 0.25, 0.5 and 1.0 M NaCl were 1.8 × 10–3, 6.0 × 10–3, 1.2 × 10–2, and 2.0 × 10–2 M, respectively. Concentration-response curves for sucrose in the tarsal D-type sugar receptor shifted to the right under the existence of high concentration of NaCl. Number of impulses per D-type sugar receptor at the median acceptance thresholds described above were 7.5, 8.4, 6.8 and 10.4 for the first 0.1 s of stimulation, respectively. The average number was 8.2 impulses per 0.1 s. Comparisons were made between the behavioral acceptance thresholds (1) on one leg exposed to sucrose mixed with 0.01 M NaCl and (2) on two contralateral legs, one of which was exposed to sucrose in 0.01 M NaCl and the other to 0.5 M NaCl alone. The acceptance thresholds from two experiments agreed with each other. The median threshold value was 1.7 × 10–2 M sucrose. Behavioral inhibition by NaCl in mixtures with sucrose can be explained by its peripheral inhibition of sugar receptors.This research was supported in part by ITO foundation and Scientific Research Fund from the Ministry of Education of Japan.  相似文献   

13.
In a normally feeding insect, the taste receptors are exposed to complex mixtures of chemicals, not single compounds. We investigate the responses of neurons in the galeal sensilla of the caterpillar of Grammia geneura to mixtures of nutrient compounds at concentrations occurring in plants. Compounds that stimulated the same neuron were generally additive in their effects in binary mixtures. Amino acids that did not stimulate usually had no effect in mixtures with a stimulating compound, but glutamic acid reduced the response to serine in the medial sensillum. Nutrient compounds that stimulated different cells in a sensillum acted independently of each other. Complex mixtures of amino acids resembling samples of free amino acids from three host plants were less stimulating than expected from their molar concentrations. In host plant selection, the response from the medial sensillum is probably dominated by sucrose; unless sucrose levels are low, amino acids will contribute little to sensory input because they stimulate the same cell as sucrose. In the lateral sensillum, amino acids act independently of sugars. The limited contact chemosensory array of caterpillars seems inadequate to allow them to make fine distinctions between plants on the basis of their free amino acids.  相似文献   

14.
Amiloride is known to inhibit the taste response of vertebrates to salt by blocking the amiloride-sensitive sodium channel. In this study, we investigated electrophysiologically the effect of amiloride on the taste response of the fleshfly Boettcherisca peregrina. When 0.5 mM amiloride was included in taste solutions, the response of the salt receptor cell (salt response) to sodium chloride (NaCl) was not depressed but those of the sugar receptor cell (sugar responses) to sucrose, glucose, fructose, l-valine (l-Val) and l-phenylalanine (l-Phe) were strongly depressed. An inhibitory effect of amiloride on the concentration-response relationship for both sucrose and l-Phe was clearly revealed, but not at high concentrations of sucrose. After pretreatment of a chemosensory seta with 0.15 mM amiloride for 10 min, the salt response to NaCl was not affected. On the other hand, the sugar responses to sucrose, fructose, l-Val and l-Phe were depressed just after amiloride pretreatment. The sugar response to adenosine 5’-diphosphate (ADP) mixed with 0.5 mM amiloride was not depressed, but the response to ADP alone was depressed after amiloride pretreatment. It was therefore observed that amiloride depressed the responses to all stimulants that react with each of the receptor sites of the sugar receptor cell.  相似文献   

15.
Stimulation of the salt receptor of the blowfly. I. NaCl   总被引:4,自引:4,他引:0  
Application of NaCl solutions to the tip of a labellar sensillum of the blowfly elicited a repetitive neural response from the salt receptor. The response was examined with respect to reproducibility and adaptation. A threshold was observed for tests with dilute solutions. Above this, the response increased linearly with the logarithm of the molarity. The response was not significantly affected by the pH of stimulating solutions, buffered or not, between 3 and 10. Beyond this range, it was reversibly inhibited until, at greater extremes of pH, atypical stimulation independent of the presence of salt was seen. Receptor sensitivity increased with fly age. The results presented here may be due to effects at sites in the sensillum other than the receptor membrane.  相似文献   

16.
Recent findings have indicated that the Gr genes for putative gustatory receptors of Drosophila melanogaster are expressed in a spatially restricted pattern among chemosensilla on the labellum. However, evidence for a functional segregation among the chemosensilla is lacking. In this work, labellar chemosensilla were classified and numbered into three groups, L-, I- and S-type, based on their morphology. Electrophysiological responses to sugars and salt were recorded from all the accessible labellar chemosensilla by the tip-recording method. All the L-type sensilla gave good responses to sugars in terms of action potential firing rates, while the probability for successful recordings from the I-type and S-type sensilla was lower. No differences were found in the responses to sugars between chemosensilla belonging to the same type; however, dose-response curves for several different sugars varied among the sensilla types. The L-type sensilla gave the highest frequency of nerve responses to all the sugars. The I-type sensilla also responded to all the sugars but with a lower magnitude of firing rate than the L-type sensilla. The S-type sensilla gave a good response to sucrose, and lower responses to the other sugars. These results suggest that there might be variations in the expression level or pattern of multiple receptors for sugars among the three types of chemosensilla. The expression pattern of six Gr genes was examined using the Gal4/UAS-GFP system, and sensilla were identified according to the innervation pattern of each GFP-expressing taste cell. None of the spatial expression patterns of the six Gr genes corresponded to the sugar sensitivity differences we observed.  相似文献   

17.
Gustatory hairs were investigated on the legs and mouthparts of Culiseta inornata (Williston) (Diptera: Culicidae). One type of hair, each innervated by four neurons, was found on the legs. Two of the neurons responded to NaCl stimulation, one neuron to water stimulation, and one neuron to sucrose stimulation. Three kinds of hairs designated Type I (T1), Type 2 (T2) and Type 3 (T3) were analyzed on the labella. The T1 hairs are innervated by one sugar neuron, one mechanoreceptor, two salt neurons and one water neuron. The T2 hairs are innervated by two salt neurons and one mechanoreceptor. The T3 hairs, located on the oral surface of the labella, are innervated by a variable number (2-5) of neurons. Precise identification of the T3 chemosensory neurons was not made because of the small size and inaccessibility of the T3 hairs. Chemosensory hairs on the tip of the labrum were tested electrophysiologically. the sequence of decreasing effeectiveness for the three salts tested was KCl greater than NaCl greater than LiCl. Labral chemoreceptors also responded positively to sucrose.  相似文献   

18.
Female fourth- and sixth-instar larvae, Choristoneura fumiferana, were tested individually for the response of the sugar cell on the lateral styloconic sensillum to 25 mM/l concentrations of 12 carbohydrates. The spruce budworm showed an age-related change in responsiveness of the sugar cell. The order of stimulating effectiveness for fourth-instars was melibiose > sucrose > raffinose.These storage di- and trisaccharides are present in the host plant at the beginning of budbreak. Sixth-instars responded to sucrose > fructose> m-inositol. These findings are in accordance with those of a previous behavioural study on feeding preferences of sixth-instars. The response for both melibiose and raffinose does not change from fourth- to sixth-instars; however, it does for sucrose, fructose and m- inositol.  相似文献   

19.
C(4) phosphoenolpyruvate carboxylase (PEPCase: EC 4.1.1.31) is subjected to in vivo regulatory phosphorylation by a light up-regulated, calcium-independent protein kinase. Salt stress greatly enhanced phosphoenolpyruvate carboxylase-kinase (PEPCase-k) activity in leaves of Sorghum. The increase in PEPCase-k anticipated the time course of proline accumulation thereby suggesting that water stress was not involved in the kinase response to salt. Moreover, osmotic stress seemed not to be the main factor implicated, as demonstrated by the lack of effect when water availability was restricted by mannitol. In contrast, LiCl (at a concentration of 10 mM in short-term treatment of both excised leaves and whole plants) mimicked the effects of 172 mM NaCl salt-acclimation, indicating that the rise in PEPCase-k activity resulted primarily from the ionic stress. Both NaCl and LiCl treatments increased the activity of a Ca(2+)-independent, 35 kDa kinase, as demonstrated by an in-gel phosphorylation experiment. Short-term treatment of excised leaves with NaCl or LiCl partially reproduces the effects of whole plant treatments. Finally, salinization also increased PEPCase-k activity and the phosphorylation state of PEPCase in darkened Sorghum leaves. This fact, together with increased malate production during the dark period, suggests a shift towards mixed C(4) and crassulacean acid metabolism types of photosynthesis in response to salt stress.  相似文献   

20.
Little is known about coding of taste mixtures in complex dynamic stimulus environments. A protocol developed for odor stimuli was used to test whether rapid selective adaptation extracted sugar and salt component tastes from mixtures as it did component odors. Seventeen human subjects identified taste components of "salt + sugar" mixtures. In 4 sessions, 16 adapt-test stimulus pairs were presented as atomized, 150-μL "taste puffs" to the tongue tip to simulate odor sniffs. Stimuli were NaCl, sucrose, "NaCl + sucrose," and water. The sugar was 98% identified but the suppressed salt 65% identified in unadapted mixtures of 2 concentrations of NaCl, 0.1 or 0.05 M, and sucrose at 3 times those concentrations, 0.3 or 0.15 M. Rapid selective adaptation decreased identification of sugar and salt preadapted ambient components to 35%, well below the 74% self-adapted level, despite variation in stimulus concentration and adapting time (<5 or >10 s). The 96% identification of sugar and salt extra mixture components was as certain as identification of single compounds. The results revealed that salt-sugar mixture suppression, dependent on relative mixture-component concentration, was mutual. Furthermore, like odors, stronger and recent tastes are emphasized in dynamic experimental conditions replicating natural situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号