首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzolactone-V8 (4) is a lactone analogue of the artificial tumor promoter benzolactam-V8 (1). To investigate the effect of hydrophobic substituents at positions 7 and 15 of 4 on binding selectivity for protein kinase C (PKC) isozymes, 7- and 15-decylbenzolactone-V8 (7, 8) were synthesized and their binding affinities for synthetic PKC isozyme C1 peptides were examined. Compound 8 showed moderate selectivity for novel PKC isozymes similar to 9-decylbenzolactone-V8 (5), while 7 was less selective. Compounds 7 and 8 showed no significant selectivity among novel PKC isozymes unlike 8-decylbenzolactone-V8 (6). These results indicate that the introduction of a hydrophobic substituent at position 8 of 4 is most effective in the development of PKC epsilon- and PKCeta-selective binders.  相似文献   

2.
This report describes that protein kinase C delta (PKCδ) overexpression prevents TRAIL‐induced apoptosis in breast tumor cells; however, the regulatory mechanism(s) involved in this phenomenon is(are) incompletely understood. In this study, we have shown that TRAIL‐induced apoptosis was significantly inhibited in PKCδ overexpressing MCF‐7 (MCF7/PKCδ) cells. Our data reveal that PKCδ inhibits caspase‐8 activation, a first step in TRAIL‐induced apoptosis, thus preventing TRAIL‐induced apoptosis. Inhibition of PKCδ using rottlerin or PKCδ siRNA reverses the inhibitory effect of PKCδ on caspase‐8 activation leading to TRAIL‐induced apoptosis. To determine if caspase‐3‐induced PKCδ cleavage reverses its inhibition on caspase‐8, we developed stable cell lines that either expresses wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) or caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδ mut) utilizing MCF‐7 cells expressing caspase‐3. Cells that overexpress caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδmut) significantly inhibited TRAIL‐induced apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. In MCF‐7/cas‐3/PKCδmut cells, TRAIL‐induced caspase‐8 activation was blocked leading to inhibition of apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. Together, these results strongly suggest that overexpression of PKCδ inhibits caspase‐8 activation leading to inhibition of TRAIL‐induced apoptosis and its inhibition by rottlerin, siRNA, or cleavage by caspase‐3 sensitizes cells to TRAIL‐induced apoptosis. Clinically, PKCδ overexpressing tumors can be treated with a combination of PKCδ inhibitor(s) and TRAIL as a new treatment strategy. J. Cell. Biochem. 111: 979–987, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The isoquinolinesulfonamide PKC inhibitors H-7 and H-8 inhibit primary, in vivo generated cytotoxic T lymphocyte (CTL) activity by 50% at concentrations approximating their reported Ki values for PKC, 6 uM and 15 uM respectively. However, a greater than ten-fold higher concentration of H-7 (100 uM) is required to reduce secondary or clone 8F CTL-mediated cytotoxicity by 50%. At this concentration H-7 is also reported to inhibit calmodulin (CaM)-dependent enzymes. To distinguish between the effect of 100 uM H-7 on PKC versus CaM the napthalenesulfonamide CaM antagonist W-7 was investigated. W-7 inhibited primary, secondary and clone 8F CTL-mediated cytolysis by 50% near its reported Ki value for CaM-dependent kinase activity, 12 uM. We conclude that W-7 and 100 uM H-7 reduce cytolysis by inhibiting CaM-dependent reactions and not PKC. Thus, these findings indicate that primary killers require both PKC- and CaM-dependent activation pathways for lethal hit delivery, whereas highly lytic cultured CTL use only one pathway dependent upon CaM.  相似文献   

4.
The lipophilic immunomodulator MTP-PE is able to activate purified protein kinase C (PKC) by substituting phosphatidyl-serine (PS) or the synthetic diacylglycerol, DiC8, in the assay system. In addition, MTP-PE inhibited [3H]-phorbol-12, 13-dibutyrate ([3H]-PDBu) binding to PKC in a reconstituted receptor system as well as on intact cells (MCF-7). Furthermore, MTP-PE was also able to reduced the epidermal growth factor binding of MCF-7 cells to an extent similar to that found with DiC8 or PDBu. These data indicate that MTP-PE is able to compete for the phorbol ester binding site on PKC both in vivo and in vitro. The components of the MTP-PE molecule, MTP (muramyl-tripeptide) and PE (phosphatidylethanolamine) exerted only marginal effects on PKC activity, did not affect the phorbol ester binding of PKC and the EGF binding of intact MCF-7 cells. Our results suggest that only the complete molecule of the immunomodulator MTP-PE is able to interact with PKC.  相似文献   

5.
Calcium and phospholipid dependent Protein kinase C (PKC) may play a role in memory function and pathogenesis of many neurodegenerative disorders such as Alzheimer's disease (AD). Abnormal phosphorylation by PKC as well as reduced levels of PKC has been implicated in the neurodegeneration associated with AD and aging. Recently, many subtypes of PKC isozymes have been identified by molecular biology techniques which are expressed differentially in various regions of the brain. The reduction and alterations in the activities and distribution of these subtypes of PKC isozymes may be accountable for the decline of selective neurons during aging. In order to investigate the role of PKC isozymes during aging, we examined the distribution of PKC-, , and mRNA, expressions between young (4 months) and old (25 months) rat brains using in situ hybridization histochemistry. Our studies showed that signals of three isoforms of PKC mRNA vary in cortical and hippocampal regions. However, no change was detected in any of the PKC isoforms mRNA expressions in aged animals.  相似文献   

6.
Resident mouse peritoneal macrophages synthesized and released prostaglandins (PGs) when challenged with 12-O-tetradecanoylphorbol 13-acetate (TPA) or 1,2-dioctanoyl-sn-glycerol (DiC8). Both stimuli were found to activate Ca2+/phospholipid-dependent protein kinase C (PKC). 1-(5-Isoquinolinesulphonyl)-2-methylpiperazine ('H-7') and D-sphingosine, known to inhibit PKC by different mechanisms, were able to decrease the PKC activity of macrophages in a dose-dependent manner. Addition of either PKC inhibitor decreased PG synthesis and also the release of arachidonic acid (AA) from phospholipids induced by TPA or DiC8. Simultaneously TPA or DiC8 also decreased incorporation of free AA into membrane phospholipids of macrophages. AA incorporation could be restored, however, by pretreatment with the PKC inhibitors. Our results demonstrate an involvement of PKC in the regulation of PG synthesis in mouse peritoneal macrophages and provide further evidence that reacylation of released fatty acids may be an important regulatory step.  相似文献   

7.
To investigate the role of the amide hydrogen of (-)-indolactam-V (1) and benzolactam-V8's on protein kinase C (PKC) binding and tumor promotion, 8-decylbenzolactone-V8 (6), a new lactone analogue of 8-decylbenzolactam-V8 (4), was synthesized from 2-nitrophenylpyruvic acid (7) in 11 steps. The PKC binding ability and tumor-promoting activities in vitro of 6 were much lower than those of 1 and 4, suggesting that the amide hydrogen of 1 and benzolactam-V8's plays a critical role in tumor promotion. However, it is noteworthy that 6 showed significant selectivity in the PKC isozyme surrogate binding.  相似文献   

8.
Previous studies have implicated protein kinase C (PKC) as a mediator in the activation of macrophages by interferons. In order to probe further into the suspected role of protein kinase C in mouse peritoneal macrophage activation, the effects of protein kinase inhibitors in macrophage Fc gamma R and Ia Ag expression were studied. The protein kinase inhibitor, H7, reduced basal levels, and inhibited IFN-alpha-induced expression of Fc gamma R significantly. The concentration of H7 required to inhibit 50% of the Fc gamma R induction was approximately 12 microM, which reflects the previously reported affinity of this compound for PKC in vitro. H7 had only a minimal effect on IFN-gamma-induced Fc gamma R, suggesting different pathways of Fc gamma R induction by the two types of IFN. Ia induction by IFN-gamma was also inhibited by H7, indicating that both types of IFN can utilize PKC to mediate at least part of the signal required for Fc gamma R or Ia expression. HA-1004, a derivative of H7 which possesses high affinity for cyclic nucleotide-dependent protein kinases, but low affinity for PKC, did not alter induction, while H8, a slightly less effective PKC inhibitor than H7, was effective at higher concentrations. Another structurally distinct PKC antagonist, staurosporine, was also effective inhibiting IFN-alpha-induced Fc gamma R and IFN-gamma-induced Ia Ag expression, providing additional evidence that PKC is important. H7 was found to be effective when added as late as several hours after IFN treatment, indicating a prolonged or delayed requirement of PKC for optimal induction of Ia and Fc gamma R by IFN.  相似文献   

9.
12-O-tetradecanoyl phorbol 13-acetate (TPA) and 1,2-dioctanoyl-sn-glycerol (diC8) activate protein kinase C (PKC) in transformed fetal bovine aortic endothelial GM 7373 cells. Both molecules cause a similar increase in membrane-associated PKC activity and in the phosphorylation of a PKC-specific endogenous 87-kDa substrate in intact cells. Even though both TPA and diC8 exert a mitogenic activity in GM 7373 cells, only TPA induces also an increase in cell-associated plasminogen activator (PA) activity. Down-regulation of PKC which follows TPA-pretreatment completely abolishes the mitogenic activity of diC8 and the mitogenic and PA-inducing activity of TPA. However, both the PKC inhibitor H-7 and the down-regulation of PKC which follows a prolonged stimulation with diC8 do not abolish the PA-inducing activity of TPA. The PA-inducing activity of TPA is instead inhibited in cultures incubated in the presence of 1 mM EGTA or in a calcium-free medium. The data indicate that TPA and diC8 induce a different pattern of cellular activation in GM 7373 cells and that the PA-inducing activity of TPA might not be mediated by PKC.  相似文献   

10.
We have used a previously described retroviral expression vector pMV7-PKC beta 1 to develop derivatives of two rat liver epithelial cell lines, K16 and K22, that stably express about tenfold-higher PKC activity than control cells. Despite these high levels of PKC, these cells did not exhibit gross morphologic changes, anchorage-independent growth, or tumorigenicity. K16PKC-4 and K22PKC-2, two lines with the highest PKC enzyme activity, were studied further in terms of several responses to the phorbol ester tumor promoter TPA. When treated with 100 ng/ml of TPA, the control K16MV7 and K22MV7 cells displayed a slight change in morphology, whereas the K16PKC-4 and K22PKC-2 cells displayed a marked change in morphology. Northern blot analyses demonstrated that TPA induced increased levels of fos, myc, phorbin, and ODC RNAs in control K16MV7 and K22MV7 cells, with maximum induction occurring at about 0.5, 1, 8, and 8 h, respectively. In K16PKC-4 and K22PKC-2 cells, TPA induction of phorbin and ODC RNAs was markedly enhanced, but this was not the case for myc and fos RNAs. In addition, the levels of myc RNA were constitutively higher in both K16PKC-4 and K22PKC-2 cells than in the control cells. Taken together, these results provide direct evidence that PKC plays a critical role in modulating the expression of myc, phorbin, and ODC RNAs. On the other hand, overexpression of PKC beta 1 is not itself sufficient to cause cell transformation.  相似文献   

11.
Protein kinase C (PKC) plays a central role in external signal transduction for many cell types. To examine the involvement of PKC in the control of erythropoiesis, we tested the effects of PKC inhibitors on in vitro colony formation by late erythroid progenitors (CFU-e) from normal and Friend virus-infected mice. Inhibitors of PKC and other kinases (H-7 and H-8) inhibited CFU-e at concentrations which inhibit PKC. HA1004, an inhibitor of the cyclic nucleotide-dependent kinases and a weak inhibitor of PKC, had little effect on CFU-e. In the absence of erythropoietin, a combination of phorbol ester and Ca++ ionophore significantly increased normal CFU-e. These results suggest PKC plays a role in the transduction of regulatory signals for the growth of CFU-e.  相似文献   

12.
Modulation of CD5 expression by TPA was investigated on T-leukemic cell lines corresponding to different stages of ontogeny. These CD5 changes have been analyzed simultaneously with modifications of cell growth, cell cycle, cell surface phenotype, and PKC content. CD5 expression was found 6- to 17-fold increased by TPA in a dose-dependent manner on phenotypically mature T-cells (Jurkat, JM, and T-CLL) while T-cells from earlier stages of differentiation (CEM III, CEM 95, and CEM 44) were found unresponsive. CD5 upregulation on TPA-sensitive JM cells appears correlated with inhibition of cell growth, blockage in G1 phase, and phenotypic maturation (downregulation of CD7 and CD1 antigens) and seemed to be related to PKC activation since DiC8 (a PKC activator) mimicked this TPA effect and H7 (a PKC inhibitor) partially reduced it. On the other hand, on CEM III cells TPA induced no modulation of CD5 antigen, a less dramatic effect on cell growth and cell cycle, but a CD7 downregulation. TPA appeared fully effective in binding and translocating PKC in both CEM III and JM cells, although the PKC activity level was three times higher in the latter. Finally, our study suggests that CD5 expression is at least partially under control of PKC in phenotypically mature neoplastic T-cells while PKC could not be directly involved in the regulation of CD5 antigen in leukemic cells arrested at earlier stages of differentiation.  相似文献   

13.
CD20, a B cell integral membrane protein, regulates B cell activation and is differently phosphorylated in resting and activated cells. We have previously shown that CD20 phosphorylation is increased in activated cells and in phorbol ester-treated resting cells. Phosphorylation is also altered by agents which signal B cell proliferation, such as anti-IgM and a B cell growth factor. The present study was designed to address whether protein kinase C (PKC) or other kinases used CD20 as a substrate. When purified PKC was incubated with isolated CD20, both the 35- and 37-kDa CD20 proteins were phosphorylated in vitro. Intact resting B cells were next incubated with the protein kinase inhibitors H-7, H-8, and W-7. No change in basal CD20 phosphorylation was observed in the presence of W-7 and H-8, indicating that the protein cyclic nucleotide-dependent and calmodulin-dependent kinases were not actively phosphorylating CD20. Surprisingly, the PKC inhibitor H-7 increased CD20 phosphorylation at concentrations above 25-50 microM. To assess whether PKC either activated a phosphatase or inactivated a kinase affecting CD20 phosphorylation, tryptic phosphopeptide mapping of CD20 was performed. These studies revealed that addition of phorbol 12-myristate 13-acetate increased phosphorylation of some peptides differing from those which had increased phosphorylation following addition of H-7. Furthermore, signalling through surface immunoglobulin increased phosphorylation of CD20 peptides distinct from those hyperphosphorylated following addition of phorbol 12-myristate 13-acetate. These results demonstrate that 1) CD20 has multiple phosphorylation sites, as predicted from sequence data, and 2) whereas PKC can use CD20 as substrate, at least one other unidentified kinase phosphorylates CD20 in resting cells. Our data also predict that activation of B cells via the antigen receptor (surface IgM) may activate other protein kinases in addition to PKC.  相似文献   

14.
15.
Interferon gamma (IFN-gamma) is the most potent known lymphokine for activating macrophages and has been shown to induce expression of HLA-DR in THP-1 cells, a monocytic tumor cell line which expresses many of the properties of monocytes, in a dose- and time-dependent manner. Experiments were designed to examine, by FACS analysis and by measurement of messenger RNA levels, the molecular mechanism regulating the expression of HLA-DR molecules. The expression of HLA-DR molecules induced by IFN-gamma was blocked by the protein kinase C (PKC) inhibitors sphingosine, staurosporine, and H7. H7 when added up to 20 hr after the initial stimulation with IFN-gamma prevented the further expression of HLA-DR. The general kinase inhibitors H8, H9, and HA1004, all less potent PKC inhibitors than H7, did not block the IFN-gamma-induced expression of HLA-DR at the concentrations employed. W7, a calmodulin antagonist, but not a PKC inhibitor, was also unable to prevent the IFN-gamma-induced expression of HLA-DR. Treatment of THP-1 with phorbol 12-myristate 13-acetate (PMA), a direct activator of PKC, alone or with Ca2+ ionophore A23187, was unable to induce HLA-DR expression. However, pretreatment with PMA for 24 hr prior to IFN-gamma stimulation decreased the IFN-gamma-induced expression of HLA-DR without decreasing IFN-gamma receptor levels. These results suggest that PKC plays a significant role in the IFN-gamma-induced signal transduction pathway leading to the expression of HLA-DR in cells of the mononuclear phagocytic lineage, and that PKC activity is required throughout the course of events leading to the actual expression of HLA-DR.  相似文献   

16.
The effects of prolactin (PRL) on A10 (aortic smooth muscle) cell proliferation were examined by measuring both [3H]thymidine incorporation and increases in cell number. PRL induced a significant proliferative response from 10(-11) to 10(-7) M, with optimal activity at 10(-10) M. PRL also enhanced platelet-derived growth factor (PDGF)-induced proliferation. The possibility that PRL induces proliferation through a protein kinase C (PKC)-mediated mechanism was also examined. PRL caused activation of PKC from 10(-12) to 10(-8) M. Antiserum to PRL, a monoclonal antibody directed against the PRL receptor and the immunosuppressive agent cyclosporine A, were able to inhibit PRL-induced proliferation and activation of PKC. The PKC inhibitors, staurosporine, sphingosine, and 1-(-5-iso-quinoline-sulfonyl)-2-methylpiperazine (H-7) also antagonized both proliferation and PKC activation. These data strongly suggest that PRL-induced A10 cell proliferation is mediated through the PKC pathway and that this may play a role in vascular smooth muscle cell hyperplasia, characteristic of the pathogenesis of cardiovascular diseases such as hypertension and atherosclerosis.  相似文献   

17.
The best established function of C5b-9 is the ability to lyse or kill cells after assembly in the plasma membrane. In addition to this cytolytic function, increasing evidence suggests that C5b-9 also stimulate a variety of cell functions in vitro. Relatively little is known about the C5b-9 signals responsible for cell activation other than a transient increase in cytosolic Ca2+ primarily due to Ca2+ influx that have been determined in a cell population. In this report, signal messenger generation in Ehrlich cells by the sublytic terminal complement complexes (TCC), C5b-9, C5b-8, and C5b-7, was further examined, as well as the role of signal messengers in stimulating elimination of TCC from the cell surface. Changes in cytosolic Ca2+ were monitored in individual cells after a single dose of C5b-9 by digital imaging fluorescence microscopy that revealed oscillations in cytosolic Ca2+ over a period of 10 min. Sublytic C5b-9 substantially increased protein kinase C (PKC) activity at an external Ca2+ concentration of 1.5 mM. C5b-9-mediated PKC activation could be inhibited by 60 to 80% when external Ca2+ was reduced to 0.015 mM. C5b-8, but not C5b-7, activated PKC to a lesser extent. C5b-8 and C5b-7 also stimulated an increase in cAMP. Rapid elimination of TCC known to be stimulated by Ca2+ signal was partially inhibited by protein kinase inhibitors, H-7 and to a lesser extent by HA1004, suggesting a role for PKC in the elimination response. TCC elimination was not accelerated by agents that increase cAMP.  相似文献   

18.
V Rogalsky  G Todorov  T Den  T Ohnuma 《FEBS letters》1992,304(2-3):153-156
Protein kinase C (PKC) activity and DNA synthesis were measured in human fetal bone marrow fibroblasts following treatment with tumor necrosis factor alpha (TNF alpha) (500 U/ml) or conditioned media containing natural cell proliferation inhibitor (CM-NCPI). Treatment with TNF alpha led to growth stimulation (120 +/- 7% of control in 24 h, 141 +/- 6% in 72 h). At the same time particulate PKC activity diminished, reaching 55 +/- 8% of control in 24 h and remaining at this level at 72 h. CM-NCPI treatment of the cells resulted in a decrease in DNA synthesis (by 39 +/- 6% in 2 h, by 58 +/- 5% in 24 h, and by 78 +/- 8% in 72 h). This was accompanied by a significant rise in particulate PKC activity which increased over 3-fold in 2 h, over 5-fold in 24 h, and up to 11-fold in 72 h. This 11-fold elevation was maintained after 2 week exposure of the fibroblasts to CM-NCPI. The PKC inhibitor neomycin abolished CM-NCPI induced growth inhibition, whereas PKC activator 12-O-tetradecanoylphorbol 13-acetate intensified it. These results suggest that CM-NCPI acts as PKC activator and that negative growth regulation by extracellular agents may involve stimulation of PKC activity.  相似文献   

19.
M Mitsuhashi  D G Payan 《Life sciences》1988,43(18):1433-1440
The present study was undertaken in order to examine the effect of protein kinase C (PKC) on histamine H1 receptors (H1R) present on the smooth muscle cell line, DDT1MF-2. [3H]-pyrilamine binding revealed that specific [3H]-pyrilamine binding sites were reduced by pretreatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, but not the Kd. The TPA analogue, 4 alpha phorbol 12,13-didecanoate, which does not activate PKC, failed to induce down-regulation of H1R. TPA-induced down-regulation of H1R was inhibited by pretreatment with 1-(5-Isoquinilinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, in a dose dependent manner. The H-7 analogue, H-8, which is a less potent inhibitor of PKC, but a potent inhibitor of cyclic nucleotide dependent protein kinase, had no effect on H1R. Moreover, treatment with TPA inhibited histamine-induced increases in [Ca2+]i in cells loaded with the fluorescent indicator, indo-1. These data suggest that H1R in DDT1MF-2 cells are functionally regulated by PKC.  相似文献   

20.
Epidermal 7-ethoxyresorufin O-deethylase (EROD) activity was elevated greater than 100-fold within 4 to 7 h of topical treatment of SENCAR mice with 100 nmol dibenz[a,c]anthracene (DB[a,c]A). Treatment of skin with 2 micrograms of 12-O-tetradecanoylphorbol-13-acetate (TPA) 2 to 8 h prior to DB[a,c]A application suppressed induction by 80%. Suppression was dose-dependent over the range of 0.01 to 5 micrograms TPA (ID50 approximately 0.6 nmol). EROD activities in normal and TPA-treated epidermis paralleled steady state P450 CYP1A1 mRNA content. Analogs of TPA incapable of activating or down-regulating protein kinase C (PKC) did not suppress induction. Pretreatment of skin with sn-1,2-didecanoylglycerol, an activator of PKC which causes translocation but no down-regulation, did not suppress EROD induction. However, induction was suppressed by chrysarobin, an anthralin analog that causes PKC down-regulation in the absence of prior activation. These studies suggest that PKC participates in the processes associated with Cyp1a-1 induction and that TPA effects Cyp1a-1 induction through its down-regulation of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号