首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribonucleic Acid and the Gram Stain   总被引:4,自引:0,他引:4  
  相似文献   

2.
3.
Fifty-five reagents were studied as to their ability to replace iodine in the Gram stain. None gave results as good as iodine. Eight gave usable Gram preparations, and forty-seven gave negative results. Omission of the counterstain resulted in increasing to thirty-three the number of reagents giving differentiation, but this, was not considered a true Gram differentiation. Many oxidizing agents were shown not to be substitutes for iodine; therefore the function of iodine must be more than to serve as an oxidizing agent. Many reagents which formed precipitates with the dye could not replace iodine; therefore factors other than precipitate formation must be involved. However, all agents which were good substitutes for iodine were both good oxidizing and dye precipitating agents. Experiments involving the study of cell membrane permeability showed that Gram-positive cells were less permeable to iodine in alcoholic solution than Gram-negative cells. This difference could not be demonstrated for iodine in aqueous solution. It was concluded that iodine served to form a dye-iodine precipitate (or complex) in the cell. Since Gram-positive cells were less permeable to iodine in alcohol than Gram-negative cells, this resulted in a slower dissolving out of this complex from Gram-positive cells during de-colorization and hence a slower decolorization time. The relative solubilities of dye precipitates in alcohol and in aqueous safranin solution were also indicated as an important factor influencing decolorization. Dyes which formed highly soluble precipitates with iodine could not be used in the Gram stain. It is not proposed that the mechanism of the Gram stain is entirely one of membrane permeability; chemical factors are undoubtedly important and will be discussed in a later paper. However, it is proposed that the chemical and physical factors are closely interrelated in the Gram stain mechanism.  相似文献   

4.
A modification of the Gram stain in which iodine-alcohol is substituted for 95% alcohol as a decolorizing agent has been found particularly useful in staining Gram-positive organisms in tissues and also for smears. The technic for tissue sections follows:
  1. Apply nuclear stain.
  2. Wash.
  3. Stain in Hucker's gentian violet 2 to 3 minutes (i. e. 1 part Sat. Alc. Sol. crystal violet to 4 parts 1% Aqu. Sol. ammonium oxalte).
  4. Wash in water.
  5. Stain in Gram's iodine 5 minutes.
  6. Wash in water.
  7. Decolorize in 95% alcohol to which enough tincture of iodine has been added to give a mahogany color.
  8. Counterstain.
  9. Dehydrate and mount.
  相似文献   

5.
6.
The Gram stain, the most important stain in microbiology, was described more than a century ago. Only within the past decade, however, has an understanding of its mechanism emerged. It now seems clear that the cell wall of Gram-positive microorganisms is responsible for retention of a crystal violet:iodine complex. In Gram-negative cells, the staining procedures damage the cell surface resulting in loss of dye complexes. Gram-positive microorganisms require a relatively thick cell wall, irrespective of composition, to retain the dye. Therefore, Gramstainability is a function of the cell wall and is not related to chemistry of cell constituents. This review provides a chronology of the Gram stain and discusses its recently discovered mechanism.  相似文献   

7.
8.
9.
In perfecting the modification of the Gram-stain previously proposed, the following points are of interest:

1. Acetone is too strong a decolorizer for Gram-positive organisms and alcohol too weak for Gram-negative organisms. Consequently, it is now recommended that equal parts of acetone (100% c.p.) and ethyl alcohol (95%) be used as a decolorizing agent. The time of application should not ordinarily exceed 10 seconds.

2. Aqueous basic fuchsin (0.1%) serves as a strongly contrasting counterstain. Prolonged application renders Gram-positive organisms doubtful or Gram-negative, while short application renders Gram-negative organisms doubtful or Gram-positive. Twenty (20) seconds is therefore recommended as the time of application of the counterstain.

3. The method here described, with due regard for its limitations, is of value in Gram-staining pure or mixed cultures as well as for organic materials, such as Acidophilus milk, feces, etc., either for research purposes or classroom use. The method is as follows:

Air-dry film and fix with least amount of heat necessary.

Flood with dye for 5 minutes. Previously mix 30 drops of a 1% aqueous solution of crystal violet or methyl violet 6B with 8 drops of a 5% solution of sodium bicarbonate. Allow the mixture to remain for 5 minutes or more.

Flush with iodine solution for 2 minutes. Two grams iodine dissolved in 10 cc. normal sodium hydroxide solution and 90 cc. water added.

Drain without blotting but do not allow film to dry.

Add a mixture of equal parts of acetone and alcohol drop by drop until the drippings are colorless. (10 seconds or less.)

Air-dry slide.

Counterstain for 20 seconds with 0.1% aqueous solution of basic fuchsin.

Wash off excess stain by short exposure to tap water and air-dry. If slide is not clear immersion in xylol is recommended.  相似文献   

10.
The following method of making permanent smears of pollen mother cells is in general use and gives excellent results. Determine the stage of meiosis from aceto-carmin mounts. Smear the pollen mother cells on a dry slide. Fix in Navaschin's or a modified Flemming's solution from 1 to 2 hours. Wash in 10 to 20% alcohol from 15 to 30 minutes. Stain in 1% aqueous crystal violet from 1 to 5 minutes. Rinse in water and pass thru 30 to 50% alcohol, about 15 to 20 seconds in each. Transfer to 80% alcohol containing 1% iodine and 1% potassium iodide for 30 seconds. Destain with absolute alcohol, followed by clove oil. xylol, balsam and cover.

Permanent smears for chromosome counts can be quickly made by smearing pollen mother cells on a dry slide, fix and stain with aceto-carmin, dehydrate with mixtures of absolute alcohol and acetic acid, follow with xylol, balsam, and cover.  相似文献   

11.
12.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be 'Gram-positive,' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be 'Gram-negative.' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   

13.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be ''Gram-positive,'' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be ''Gram-negative.'' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   

14.
The smear method of plant cytology as described by Taylor, presented difficulties in obtaining an adequate stain with the iron-alum haematoxylin combination. The writer has largely avoided those difficulties by curtailing the times of mordanting and of staining. The smear method has been applied by the writer in the study of microsporogenesis in the monocotyledonous genera Tradescantia and Rhoeo and in the dicotyledonous genus Podophyllum. Due to the rapidity with which permanent preparations can be completed by the smear method, there is presented a valuable means for securing a more critical evaluation of the available preservatives.  相似文献   

15.
The smear method of plant cytology as described by Taylor, presented difficulties in obtaining an adequate stain with the iron-alum haematoxylin combination. The writer has largely avoided those difficulties by curtailing the times of mordanting and of staining. The smear method has been applied by the writer in the study of microsporogenesis in the monocotyledonous genera Tradescantia and Rhoeo and in the dicotyledonous genus Podophyllum. Due to the rapidity with which permanent preparations can be completed by the smear method, there is presented a valuable means for securing a more critical evaluation of the available preservatives.  相似文献   

16.
Tannic acid mordanting reveals the periplasm, the area between the outer membrane and the inner membrane of gram-negative bacteria, Rhizobium gp., Escherichia colt and Enterobacter aeregenes, as an electron-dense layer continuous with the inner leaflet of the outer membrane. The method involves 18 hr of tannic acid treatment after fixation in aldehyde prior to osmium tetroxide postfixation, followed by conventional electron microscopy.  相似文献   

17.
The Gram stain method was applied to the photometric characterization of aquatic bacterial populations with a charge-coupled device camera and an image analyzer. Escherichia coli and Bacillus subtilis were used as standards of typical gram-negative and gram-positive bacteria, respectively. A mounting agent to obtain clear images of Gram-stained bacteria on Nuclepore membrane filters was developed. The bacterial stainability by the Gram stain was indicated by the Gram stain index (GSI), which was applicable not only to the dichotomous classification of bacteria but also to the characterization of cell wall structure. The GSI spectra of natural bacterial populations in water with various levels of eutrophication showed a distinct profile, suggesting possible staining specificity that indicates the presence of a particular bacterial population in the aquatic environment.Gram’s method is the most important and fundamental orthodox method for bacterial identification. It classifies bacteria into two groups, gram-negative and gram-positive. The mechanism of Gram staining is based on the fundamental structural and chemical attributes of bacterial cell walls. The cell walls of gram-positive bacteria have a high percentage of peptidoglycan, while those of gram-negative bacteria have only a thin peptidoglycan layer (13, 6). In Gram’s method, an insoluble dye-iodine complex is formed inside bacterial cells and is extracted by alcohol from gram-negative but not gram-positive bacteria (6, 12, 16). There are taxonomically gram-variable species, but some cells of gram-negative or gram-positive species may show gram-variable characteristics due to environmental stress, such as unsuitable nutrients, temperature, pH, or electrolytes (3).Functional differences between gram-positive and gram-negative cell walls have been studied with special emphasis on nutrient uptake from the ambient environment. Gram-negative bacteria have a periplasmic space between the lipopolysaccharide layer and the plasma membrane. In this space, binding proteins initially attach to nutrients and take them to a membrane carrier. Gram-positive bacteria lack the periplasmic space and are believed to have no binding proteins (9). Therefore, nutrient uptake from the environment is easier for gram-negative bacteria than for gram-positive bacteria. Because of this difference, the population density of gram-negative bacteria in more oligotrophic environments could be higher than that of gram-positive bacteria (20).Gram staining is commonly used only to reflect cell wall structure. If Gram staining characterizes not only simple taxonomical dichotomy but also multiple biological functions, it may also be used to correlate bacterial cell wall structure with related physiological responses to the environment. In particular, Gram staining could supply ecological information on natural bacterial populations that are difficult to culture by the present technology.Membrane filter methods are widely used for microscopy in aquatic microbiology because of the low population densities of bacteria in many aquatic environments (4, 11, 16). However, these methods sometimes have problems associated with microscopic observations, causing unclear images of bacterial cells on Nuclepore filters when used with the conventional mounting medium (immersion oil; refractive index [nd] = 1.514). Hence, a suitable mounting agent must be applied to obtain precise image analyses of Gram-stained bacteria on Nuclepore filters.In this study, we have established a distinct method to characterize photometric Gram stain images; it involves the Gram stain index (GSI) for specifying natural bacterial populations in various aquatic environments. For this purpose, we have standardized the GSI of typical gram-negative and gram-positive bacteria by using Escherichia coli and Bacillus subtilis, respectively, and compared these GSI values to those of natural bacterial populations of several freshwater environments. The natural waters we investigated were Hyoutaro-ike pond, Matsumi-ike bog, and Lake Kasumigaura, which are oligotrophic, mesotrophic, and eutrophic water bodies, respectively, as previously determined (8, 10, 13, 18, 22, 23).  相似文献   

18.
A difference in the decolorization of the two types of cells is essential for Gram differentiation; Gram-positive cells being less decolorizable than Gram-negative cells. In practice, if a high molecular weight alcohol or aniline is used, a successful differentiation of both cells can be made by Gram procedures without iodine. Iodine plays a secondary role in that by its application, all cells are made less decolorizable than they would be without iodine. The formation of a dye-iodine precipitate within the cells seems to be the best explanation of the experimental findings.  相似文献   

19.
A difference in the decolorization of the two types of cells is essential for Gram differentiation; Gram-positive cells being less decolorizable than Gram-negative cells. In practice, if a high molecular weight alcohol or aniline is used, a successful differentiation of both cells can be made by Gram procedures without iodine. Iodine plays a secondary role in that by its application, all cells are made less decolorizable than they would be without iodine. The formation of a dye-iodine precipitate within the cells seems to be the best explanation of the experimental findings.  相似文献   

20.
A mixture consisting of 1% phosphotungstic acid (PTA) in 10% chromic acid (CrO3) selectively stains the plasma membrane of plant cells. Whole tissue or pelleted cell fractions are prepared for electron microscopy using conventional methods including glutaraldehyde fixation and OsO4 postfixation, dehydration in acetone and embedding in Epon. To stain the plasma membrane, thin sections are transferred with a plastic loop to the surface of a 1% aqueous solution of periodic acid for 30 min for destaining. Following transfer through 5 distilled water rinses, the sections are exposed to the PTA-CrO3 mixture for 5 min, rinsed and mounted on grids for viewing with the electron microscope. The selectivity of the stain is retained in homogenates and serves to identify the plant plasma membrane in cell fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号