首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purification to homogeneity of hexokinases B and C from the cytosol of rat Novikoff hepatoma was achieved by a protocol using an initial chromatography on Blue 2-agarose to separate the isoenzymes from each other. After that step each hexokinase was subjected to chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-300, followed by re-chromatography on hydroxyapatite. The final preparations of hexokinases B and C had specific activities of 86 and 23.5 units/mg of protein respectively, and gave single bands on electrophoresis under non-denaturing conditions or in SDS/polyacrylamide gels. Mr values of about 100,000 were found for both isoenzymes either by Sephacryl S-300 chromatography or by SDS/polyacrylamide-gel electrophoresis. Values of apparent Km for glucose and ATP of pure hexokinase B were similar to those reported for the enzyme from other sources. The apparent Km value for glucose of hexokinase C was 0.025 mM. Marked inhibition of hexokinase C by glucose concentrations above 0.2 mM was found. The effect was partially relieved by ATP concentrations above 1 mM and was independent of pH. Glucose 6-phosphate was inhibitory, but the Ki value (0.18 mM) is higher than those reported for other animal hexokinases. The amino acid composition of hexokinase C was found to be similar to those reported for hexokinases B and D. Also, an immune serum directed against hexokinase A was able, at low dilutions, to bind hexokinases B and C. An immune serum directed against hexokinase C was able, at low dilutions, to bind hexokinase B and also, but weakly, hexokinase A.  相似文献   

2.
J Okuda  I Miwa  K Inagaki 《Enzyme》1984,31(3):176-180
The D-glucose anomeric preference of hexokinases partially purified from animals (rat, mouse, and chicken) and baker's yeast (Saccharomyces cerevisiae) were investigated by the assay system with glucose-6-phosphate dehydrogenase as a coupling enzyme. With low Km hexokinases in animal tissues and cells, the ratios of Vmax for the beta-anomer to Vmax for the alpha-anomer (V beta/V alpha) were within a range from 1.3 to 1.5. In yeast, the V beta/V alpha value was 1.1 for hexokinase A, 0.8 for hexokinase B, and 1.4 for glucokinase. The possible explanation for D-glucose anomeric preference of hexokinase is discussed.  相似文献   

3.
The intracellular distribution and several properties of hexokinases type I purified to homogeneity from human placenta and rat brain were compared. The specific activity of the human enzyme was 190 ± 5 U/mg protein; 140 ± 5 U/mg protein that of the rat hexokinase. Comparative peptide mapping after limited tryptic digestion indicates a similar domain structure, however analogous experiments performed in the presence of substrates or effectors of the enzyme provide evidence of significant differences among hexokinases. Similarly, immunological studies with polyclonal and monoclonal antibodies while confirming some common epitopes also disclose important differences that cannot be expected on the basis of amino acid composition and of an in vivo identical function. These results are consistent with suggestions by several investigators that amino acid substitutions in mammalian hexokinases have occurred at a relatively fast rate during hexokinase type I evolution  相似文献   

4.
Significance of the binding of hexokinase to mitochondria was examined with respect to stabilization of the enzyme by the binding. Stability during the incubation of the mitochondria-bound forms of hexokinases I and II, both prepared from Ehrlich-Lettre ascites hyperdiploid tumor cells (ELD cells), were compared with that of the corresponding free forms. During the incubation at pH 7.4 and 37 degrees C up to 60 min, hexokinase activities decreased gradually, and the decrease in the activity of the free form was much more marked than that of the bound form for both hexokinases. Hexokinase II was much less stable than I, and the activity of the free form of the former was almost lost by the incubation for 15 min. But, more than a half of the original activity of hexokinase II was retained even after 60 min of the incubation when the enzyme was bound to mitochondria. Addition of 50 mM glucose increased the stability of hexokinase II, but the stabilizing effect was less marked for hexokinase I. On the other hand, addition of 28 mg/ml of bovine serum albumin markedly stabilized hexokinase I to almost the same extent as was observed with mitochondria. On the contrary, the serum albumin had little stabilizing effect on hexokinase II. These findings indicate that the binding to mitochondria stabilizes the hexokinases of ELD cells, though the stability is different by nature between hexokinases I and II.  相似文献   

5.
We have analysed the pattern of expression of the hexokinase isoenzyme group in RIN-m5F insulinoma cells. Three hexokinase forms were resolved by DEAE-cellulose chromatography. The most abundant isoenzyme co-eluted with hexokinase type II from rat adipose tissue and displayed a Km for glucose of 0.15 mM, similar to the adipose-tissue enzyme. Hexokinase type II was in large part associated with a particulate subcellular fraction in RIN-m5F cells. The two other hexokinases separated by ion-exchange chromatography were an enzyme similar to hexokinase type I from brain and glucokinase (or hexokinase type IV). The latter isoenzyme was identified as the liver-type glucokinase by the following properties: co-elution with hepatic glucokinase from DEAE-cellulose and DEAE-Sephadex; sigmoid saturation kinetics with glucose with half-maximal velocity at 5.6 mM and Hill coefficient (h) of 1.54; suppression of enzyme activity by antibodies raised against rat liver glucokinase; apparent Mr of 56,500 and pI of 5.6, as shown by immunoblotting after one- and two-dimensional gel electrophoresis; peptide map identical with that of hepatic glucokinase after proteolysis with chymotrypsin and papain. These data indicate that the gene coding for hepatic glucokinase is expressed in RIN-m5F cells, a finding consistent with indirect evidence for the presence of glucokinase in the beta-cell of the islet of Langerhans. On the other hand, the overall pattern of hexokinases is distinctly different in RIN-m5F cells and islets of Langerhans, since hexokinase type II appears to be lacking in islets. Alteration in hexokinase expression after tumoral transformation has been reported in other systems.  相似文献   

6.
All hexokinase isoenzymes coexist in rat hepatocytes.   总被引:2,自引:1,他引:1  
The cellular distribution of hexokinase isoenzymes, N-acetylglucosamine Kinase and pyruvate kinases in rat liver was studied. Hepatocytes and non-parenchymal cells with high viability and almost no cross-contamination were obtained by perfusion in situ of the liver with collagenase, with the use of an enriched cell-culture medium in all steps of cell isolation. Separation of hexokinase isoenzymes was done by DEAE-cellulose chromatography, and enzyme activities were measured by a specific radioassay. Cytosol from isolated hepatocytes contained high-affinity hexokinases A, B and C, in addition to hexokinase D. The last-mentioned represented about 95% of total glucose-phosphorylating activity. Only hexokinase A was found associated t the particulate fraction. Isolated non-parenchymal cells contained only hexokinases A, B and C. N-Acetylglucosamine kinase was measured with a specific radioassay and was found as a single enzyme form in both hepatocytes and non-parenchymal cells, with higher activities in the former. Pyruvate kinase isoenzyme L was present only in the hepatocytes and isoenzyme K only in the non-parenchymal liver cells, confirming that they are good cellular markers.  相似文献   

7.
A glucose analog, N-(bromoacetyl)-D-glucosamine (GlcNBrAc), previously used to label the glucose binding sites of rat muscle Type II and bovine brain Type I hexokinases, also inactivates rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) with pseudo-first-order kinetics. Inactivation occurs predominantly via a "specific" pathway involving formation of a complex between hexokinase and GlcNBrAc, but significant nonspecific (i.e., without prior complex formation) inactivation also occurs, and equations to describe this behavior are derived. Inactivation is dependent on deprotonation of a residue with an alkaline pKa, consistent with the modified residue being a sulfhydryl group as reported to be the case with the hexokinase of bovine brain. The affinity label modifies three residues (per molecule of enzyme) at indistinguishable rates, but only one of these residues appears to be critical for activity. Amino acid analysis of the modified enzyme indicates derivatization of three cysteine residues; there was no indication of modification of other residues potentially reactive with haloacetyl derivatives. Kinetic analysis and effects of protective ligands were consistent with location of the critical sulfhydryl at the glucose binding site. Peptide mapping techniques permitted localization of the critical residue, and thus the glucose binding site, in a 40-kDa domain at the C-terminus of the enzyme. This is the same domain recently shown to include the ATP binding site. Thus, catalytic function is assigned to the C-terminal domain of rat brain hexokinase.  相似文献   

8.
In human placenta 85% of total hexokinase activity (EC 2.7.1.1) was found in a soluble form. Of this, 70% is hexokinase type I while the remaining 30% is hexokinase type II. All the bound hexokinase is type I. Soluble hexokinase I was purified 11,000-fold by a combination of ion-exchange chromatography, affinity chromatography, and dye-ligand chromatography. The specific activity was 190 units/mg protein with a 75% yield. The enzyme shows only one band in nondenaturing polyacrylamide gel electrophoresis that stains for protein and enzymatic activity; however, two components (with Mr 112,000 and 103,000) were constantly seen in sodium dodecyl sulfate-gel electrophoresis. Many attempts were made to separate these two proteins under native conditions; however, only one peak of activity was obtained when the enzyme was submitted to gel filtration (Mr 118,000), preparative isoelectric focusing (pI 5.9), anion-exchange chromatography, hydroxylapatite chromatography, and affinity chromatography on immobilized dyes and immobilized glucosamine. The high and low molecular weight hexokinases show the same isoelectric point under denaturing conditions as determined by two-dimensional gel electrophoresis. Each hexokinase subtype was obtained by preparative sodium dodecyl sulfate electrophoresis followed by electroelution. Monospecific antibodies raised in rabbits against electroeluted high and low molecular weight hexokinases were not able to recognize the native enzymes but each of them detected both hexokinases on immunoblots. Amino acid compositions and peptide mapping by limited proteolysis of the high and low molecular weight hexokinases were also performed and suggested a strong homology between these two subtypes of human hexokinase I.  相似文献   

9.
Immunological reactivity of partially purified hexokinase A (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from brain of several vertebrate species has been compared by using enzyme-linked immunosorbent assay and seven monoclonal antibodies raised against the rat brain enzyme. The epitopes recognized by three of these antibodies have been rather widely conserved among the species examined (rat, mouse, guinea pig, rabbit, cat, dog, sheep, cow, pig, chicken), while this was not the case for the epitopes recognized by the other antibodies, which differed markedly in their distribution among these species. The domain structure of these enzymes has been examined by peptide mapping (after limited tryptic digestion) in conjunction with immunoblotting techniques employing monoclonal antibodies. The results indicate that the overall domain structure of these enzymes is similar to that previously described for rat brain hexokinase A, but that there are significant differences in the size of these domains in enzymes from different species.  相似文献   

10.
The hexokinase interaction with mitochondrial membranes in rat sarcoma M-1 cells was studied. The conditions of formation of the enzyme complex with mitochondrial membranes and its stability were elaborated. The kinetic parameters of free and membrane-bound hexokinases were determined. The data obtained are discussed within the frame-work of the adsorption mechanism of hexokinase activity regulation in neoplastic tissues.  相似文献   

11.
A new improved procedure for the purification of rat hepatic glucokinase (ATP-d-glucose 6-phosphotransferase, EC 2.7.1.2) is given. A key step is affinity chromatography on Sepharose-N-(6-aminohexanoyl)-2-amino-2-deoxy-d-glucopyranose. A homogeneous enzyme, specific activity 150 units/mg of protein, is obtained in about 40% yield. The molecular weight of the pure enzyme was determined by several procedures. In particular, sedimentation-equilibrium studies under a variety of conditions indicate a molecular weight of 48000 and no evidence for dimerization; reports in the literature of other values are discussed in the light of this evidence on the pure enzyme. The amino acid composition suggests that hepatic glucokinase is closely related to rat brain hexokinase and also the wheat "light" hexokinases.  相似文献   

12.
1. The substrate kinetic properties of cerebral hexokinases (mitochondrial and cytoplasmic) were studied at limiting concentrations of both glucose and MgATP(2-). Primary plots of the enzymic activity gave no evidence of a Ping Pong mechanism in three types of mitochondrial preparation tested (intact and osmotically disrupted mitochondria, and the purified mitochondrial enzyme), nor in the purified cytoplasmic preparation. 2. Secondary plots of intercepts from the primary plots (1/v versus 1/s) versus reciprocal of second substrate of the mitochondrial activity gave kinetic constants which differed from those obtained directly from the plots of 1/v versus 1/s or of s/v versus s, although the ratios of the derived constants were consistent. The kinetic constants obtained with the cytoplasmic enzyme from primary and secondary plots were consistent. 3. Deoxyglucose, as alternative substrate, inhibited cytoplasmic hexokinase by competition with glucose, but did not compete when MgATP(2-) was the substrate varied. The K(i) for deoxyglucose when glucose concentrations were varied was 0.25mm. 4. A range of ATP analogues was tested as potential substrates and inhibitors of hexokinase activity. GTP, ITP, CTP, UTP and betagamma-methylene-ATP did not act as substrates, nor did they cause significant inhibition. Deoxy-ATP proved to be almost as effective a substrate as ATP. AMP inhibited but did not act as substrate. 5. N-Acetyl-glucosamine inhibited all preparations competitively when glucose was varied and non-competitively when MgATP(2-) was varied. AMP inhibition was competitive when MgATP(2-) was the substrate varied and non-competitive when glucose was varied. 6. The results are interpreted as providing evidence for a random reaction mechanism in all preparations of brain hexokinase, cytoplasmic and mitochondrial. The kinetic properties and reaction mechanism do not change on extraction and purification of the particulate enzyme. 7. The results are discussed in terms of the participation of hexokinase in regulation of cerebral glycolysis.  相似文献   

13.
Purification and properties of rat brain hexokinase   总被引:10,自引:0,他引:10  
Rat brain hexokinase has been purified to homogeneity as judged by disc-gel electrophoresis, isoelectric focusing, and analytical ultracentrifugation. More than 50% of the initial activity could be obtained in homogeneous form (sp act, 60 units/mg protein) by a simple procedure consisting essentially of two steps: relatively specific solubilization of the enzyme from the mitochondrial membrane by glucose-6-P, followed by DEAE-cellulose column chromatography. The molecular weight is approximately 98,000; this same molecular weight was observed when the denatured enzyme was examined by the SDS-polyacrylamide electrophoretic technique, strongly suggesting that the enzyme consists of a single polypeptide chain. In accord with this view, a single N-terminal amino acid, glycine, has been recovered in 80% yield based on a molecular weight of 98,000. The amino acid composition of the rat brain hexokinase has been determined and found to be very similar to that previously reported for the bovine brain enzyme (Schwartz, G. P., and Basford, R. E. (1967) Biochemistry6, 1070, suggesting extensive sequence homology. A notable feature of the brain hexokinases is a relatively low aromatic amino acid content, as judged by the amino acid composition and the relatively low molar extinction coefficient.  相似文献   

14.
Two soluble hexokinases and a particulate hexokinase have been separated and partially purified from spinach leaves. One of the soluble hexokinases showed a high affinity for glucose (Km = 63 μM) which was far greater than that for fructose (Km = 9.1 mM). However, with saturating fructose the activity was twice that with saturating glucose. The particulate hexokinase showed kinetic properties similar to those of this soluble hexokinase. The second soluble hexokinase was distinct in that it was much more active with fructose than with glucose at all concentrations tested, although the Km values for these hexoses (210 μM and 71 μM respectively) were similar. The activity of this hexokinase was stimulated by the monovalent cations K+ and NH4+.  相似文献   

15.
Genetic and biochemical analyses showed that hexokinase PII is mainly responsible for glucose repression in Saccharomyces cerevisiae, indicating a regulatory domain mediating glucose repression. Hexokinase PI/PII hybrids were constructed to identify the supposed regulatory domain and the repression behavior was observed in the respective transformants. The hybrid constructs allowed the identification of a domain (amino acid residues 102-246) associated with the fructose/glucose phosphorylation ratio. This ratio is characteristic of each isoenzyme, therefore this domain probably corresponds to the catalytic domain of hexokinases PI and PII. Glucose repression was associated with the C-terminal part of hexokinase PII, but only these constructs had high catalytic activity whereas opposite constructs were less active. Reduction of hexokinase PII activity by promoter deletion was inversely followed by a decrease in the glucose repression of invertase and maltase. These results did not support the hypothesis that a specific regulatory domain of hexokinase PII exists which is independent of the hexokinase PII catalytic domain. Gene disruptions of hexokinases further decreased repression when hexokinase PI was removed in addition to hexokinase PII. This proved that hexokinase PI also has some function in glucose repression. Stable hexokinase PI overproducers were nearly as effective for glucose repression as hexokinase PII. This showed that hexokinase PI is also capable of mediating glucose repression. All these results demonstrated that catalytically active hexokinases are indispensable for glucose repression. To rule out any further glycolytic reactions necessary for glucose repression, phosphoglucoisomerase activity was gradually reduced. Cells with residual phosphoglucoisomerase activities of less than 10% showed reduced growth on glucose. Even 1% residual activity was sufficient for normal glucose repression, which proved that additional glycolytic reactions are not necessary for glucose repression. To verify the role of hexokinases in glucose repression, the third glucose-phosphorylating enzyme, glucokinase, was stably overexpressed in a hexokinase PI/PII double-null mutant. No strong effect on glucose repression was observed, even in strains with 2.6 U/mg glucose-phosphorylating activity, which is threefold increased compared to wild-type cells. This result indicated that glucose repression is only associated with the activity of hexokinases PI and PII and not with that of glucokinase.  相似文献   

16.
—A hexokinase has been isolated from brain tissue on Sephadex G-100 and DEAE cellulose which is similar to yeast enzyme in stimulating the AMP-aminohydrolase activity of rat brain soluble fractions. This effect of hexokinase is influenced neither by N-acetyl-glucosamine nor noradrenaline. An isoenzyme of hexokinase isolated from brain tissue on DEAE cellulose, having properties similar to that of the muscle enzyme, has no effect on AMP-aminohydrolase activity. The activating effect of yeast hexokinase is not due to its oligomeric structure. Enzyme subunits obtained by the treatment of native yeast enzyme by urea also activate AMP-aminohydrolase of rat brain soluble fractions.  相似文献   

17.
Antibody production to choline acetyltransferase purified from human brain   总被引:5,自引:0,他引:5  
Choline acetyltransferase (CAT) was isolated from human caudate and putamen. The enzyme was highly purified by a series of steps involving fractionation by protamine sulfate and ammonium sulfate followed by chromatography on DEAE-Sephadex, hydroxyapatite and carboxymethyl cellulose columns. The isolated CAT gave a single protein band on polyacrylamide gel electrophoresis at pH 8.3 which corresponded with CAT activity. A single band was also obtained at pH 6.8. Rabbit antiserum was prepared to the purified homogeneous CAT from carboxymethyl cellulose columns. It exhibited a single sharp precipitin band on double diffusion tests on Ouchterlony I.D. plates when tested against the partially purified hydroxyapatite enzyme. On preincubation, the antiserum inhibited CAT activity to 50–60% of control independently of the concentration of enzymatic protein. Normal rabbit serum neither produced a precipitin band on double diffusion tests nor inhibited the CAT activity on incubation. The anti-CAT rabbit antibody thus appeared to be specific.  相似文献   

18.
Mammalian and yeast hexokinases were found to be reversibly inhibited by fructose 2,6-bisphosphate, an effect requiring the presence of a cytosolic protein factor. Experimental evidence suggests that this factor (inhibitor) is a regulatory protein, the interactions of which with hexokinases are modulated by fructose 2,6-bisphosphate. The Vmax of hexokinase D was decreased, and no changes on other kinetic parameters were observed. The inhibitor was present in fresh liver cytosol filtered through Sephadex G-25 and was partially isolated by negative absorption on DEAE-cellulose followed by ammonium sulfate fractionation. The inhibitor was also present in brain and kidney, but not in muscle. A molecular mass of 200,000 was determined by gel filtration. The inhibition was dependent on the concentrations of both the inhibitory protein and fructose 2,6-bisphosphate. No delay in fructose 2,6-bisphosphate inhibition was observed. Several other hexose phosphates were tested and were not effective. In the presence of amounts of inhibitor sufficient to produce complete inhibition of hexokinase D, the concentration of fructose 2,6-bisphosphate required to produce 50% inhibition was about 0.5 microM. The inhibitor was unstable and was stabilized by the presence of fructose 2,6-bisphosphate.  相似文献   

19.
Rat pancreas cholesterol esterase has been immunologically compared with rat intestinal cholesterol esterase. Monospecific precipitating antisera against purified rat pancreas cholesterol esterase were produced in rabbits. Immune IgG, isolated from the antisera, crossreacted with the cholesterol esterase of intestine in the immunodiffusion assay with a pattern of complete identity. Titration of the pancreatic and intestinal enzyme with immune IgG revealed a maximum precipitation (99 and 98%) and maximum inhibition of enzyme activity (66 and 65%) when the ratio of enzyme activity (units) to immune IgG (mg) was 4.1 and 4.0, respectively. The immunological identity demonstrated in these studies lend support to the concept that intestinal cholesterol esterase is derived from the pancreatic enzyme. In additional studies, the immune IgG was employed in the immunodiffusion assay to test for cross-reaction with cholesterol esterases prepared from rat aorta, adrenal, and liver and with cholesterol esterases prepared from the pancreas of rabbit, dog, cow, and guinea pig. There was no evidence of cross-reaction in any case. Further, cholesterol esterase prepared from the pancreas of rabbit, dog, and cow retained full enzymatic activity when titrated with immune IgG.  相似文献   

20.
Summary A difference was observed in the intracellular distribution between type I and II hexokinases in Ehrlich-Lettre hyperdiploid ascites tumor cells (ELD cells). Experiment of the rebinding to the mitochondria for either each or mixture of the partially purified preparations of the two types of hexokinase indicated that the accepting site on the mitochondrial membrane was common for both types. Mild treatment of the two isoenzymes with chymotrypsin resulted in loss of the binding ability to mitochondria without change in the catalytic activity. It was deduced from these results that the essential region in the two types of hexokinase to interact with mitochondria, which was cleaved by chymotrypsin, was the same or near-similar.Secondly, rebinding to and releasing from mitochondria were examined for the two hexokinase isoenzymes in the presence of various factors affecting the interaction between hexokinase and mitochondria, such as divalent cations, glucose 6-phosphate, and Pi. In the absence of divalent cations, about a half of the type I isoenzyme was bound to mitochondria, whereas almost no type II was bound. A difference was also seen between the two types in the concentration of divalent cations required for the saturation of the binding. A more marked difference was observed in the effect of Pi either alone or in combination with glucose 6-phosphate on the activity and binding ability of the two hexokinases. For type I isoenzyme, Pi relieved both inhibitory and releasing effects of glucose 6-phosphate. On the contrary, for type II, Pi had no such a modulating effect on the releasing action of glucose 6-phosphate, and had the inhibitory effect for itself on the enzyme activity.From these results, it is likely that the difference in the intracellular distribution between type I and II hexokinases in ELD cells is due to the difference in their catalytic regions in the reaction with these ligands, which would induce the structural change in the region responsible for the binding to mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号