首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of lipid physical state on the rate of peroxidation of liposomes.   总被引:2,自引:0,他引:2  
The effect of cholesterol on the rate of peroxidation of arachidonic acid and 1-palmitoyl-2-arachidonoyl phosphatidylcholine (PAPC) in dimyristoylphosphatidylcholine (DMPC) liposomes was examined above and below the phase transition temperature (Tm) of the lipid. The rate of peroxidation of arachidonic acid was more rapid below the phase transition temperature of the host lipid. At a temperature below the Tm (4 degrees C), increasing concentrations of cholesterol reduced the rate of peroxidation of arachidonic acid as judged by the production of thiobarbituric acid reactive substances. Above Tm (37 degrees C), cholesterol increased the rate of peroxidation of the fatty acid. Similarly, PAPC was peroxidized more rapidly at 4 degrees C than at 37 degrees C. However, cholesterol had little effect on the rate of peroxidation of PAPC at 4 degrees C. The rate of peroxidation of arachidonic acid was related to the lipid bilayer fluidity as judged by fluorescence anisotropy measurements of diphenylhexatriene. The rate of peroxidation increased slowly with increasing rigidity of the probe environment when the bilayer was relatively fluid and more rapidly as the environment became more rigid. The increase in the rate of peroxidation of arachidonic acid in the less fluid host lipid was unrelated to differences in iron binding or to transfer of arachidonic acid to the aqueous phase. Decreasing the concentration of arachidonic acid in DMPC to less than 2 mol% dramatically decreased the rate of peroxidation at 4 degrees C, suggesting that formation of clusters of fatty acids at 4 degrees C is required for rapid peroxidation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We studied the effects of high temperature and paraquat on the rate of lipid peroxidation and activity of the H+-ATPase in the plasmalemma fraction isolated from pea leaves. We demonstrated a heat-induced increase in both indices. When lipid-peroxidation was inhibited by pretreatment with butylated hydroxytoluene, a synthetic antioxidant, the H+-ATPase activity increased to a lesser extent than after heat shock without pretreatment. Treatment of plants with paraquat, a prooxidant causing an oxidative stress, resulted in a dramatic increase in lipid peroxidation and H+-ATPase activity. We suggested that the enhanced lipid peroxidation could be one of the causes for the H+-ATPase activation in the plasmalemma under stress conditions.  相似文献   

3.
The aim of this study was to determine if loss of germinability in Pyrus betulaefolia seeds stored at 4°C and at room temperature is associated with a loss of membrane lipid peroxidation or changes in antioxidant enzyme activities. The results indicated that germination percentage clearly decreased when seeds were stored at room temperature rather than at 4°C from 6 to 12 months. Room-temperature storage of the pear stock seed for 12 months decreased germination to 15.52%, but germination percentage was not changed when seed was stored at 4°C for 12 months. MDA, a marker for membrane lipid peroxidation, increased significantly under room-temperature storage conditions. Antioxidant enzyme (SOD, POD, and CAT) activities were a good indicator of germination percentage in pear stock seeds. Antioxidant enzyme activities of pear stock seeds at 4°C were higher than antioxidant enzyme activities in seeds stored at room temperature from 6 to 12 months. Antioxidant enzyme activities of the pear stock seed decreased markedly under conditions of room-temperature storage from 6 to 12 months. The results of this study showed that long-term room-temperature storage was detrimental for maintaining the vigor of P. betulaefolia seeds. The mechanisms responsible for this outcome are a higher level of membrane lipid peroxidation and a lower level of activity of antioxidant enzymes.  相似文献   

4.
The advent of global warming has given rise to the issue on how temperature impacts the susceptibility of ectothermic organisms to pollution. The purpose of this study was to examine the effects of pharmaceutical products and domestic wastewaters on temperature-dependent mitochondrial electron transport activity in the freshwater mussel Elliptio complanata. Mitochondria from mussels were freshly prepared and exposed to increasing concentrations of various pharmaceutical products known to be found in municipal effluents for 30 min at 4, 12 and 20 degrees C. Electron transport activity as well as lipid peroxidation and DNA strand breaks were determined in the mitochondria. Next, mussels were placed in the aeration lagoons of two municipal wastewater treatment plants for 30 days. Mitochondrial electron transport (MET), temperature-dependent MET (MET(T)) and lipid peroxidation in gonad were then determined. The results show that all products were able to increase MET activity, but at two different ranges of threshold concentration. Certain pharmaceutical products (i.e., ibuprofen, cotinine, fluoxetine, coprostanol and trimethoprim) increased MET(T) at a lower threshold concentration than observed at 20 degrees C. Products of lesser potency in reducing lipid peroxidation were those that produced more DNA strand breaks in mitochondria. Both MET and MET(T) were significantly increased in mussels exposed to aeration lagoon effluents. Lipid peroxidation was also increased in the gonad and was significantly correlated with MET and MET(T) activities. The data indicate that pharmaceutical products and municipal effluents increase respiration rates in isolated mitochondria, such that interaction with temperature could enhance the susceptibility of mitochondrial energy production and oxidative stress in environments contaminated by domestic wastewater.  相似文献   

5.
Temperature and trace metals are common environmental stressors, and their importance is increasing due to global climate change and anthropogenic pollution. Oxidative damage and antioxidant properties have been studied in liver and gills of the European bullhead (Cottus gobio) subjected to cadmium (CdCl(2) at nominal concentrations of 0.01 and 1mg/L) for 4 days at either 15°C or 21°C. First, exposure to 1mg Cd/L induced a high mortality rate (67%) in fish held at 21°C. Regarding the antioxidant enzymes, exposure to 0.01 mg Cd/L significantly increased the activity of superoxide dismutase (SOD) and decreased the activity of glutathione reductase (GR) in liver, independently of heat stress. In gills, exposure to 21°C resulted in a significantly increased activity of glutathione peroxidase (GPx), whereas the activity of glutathione S-transferase (GST) was significantly reduced as compared to fish exposed to 15°C. Furthermore, regardless of Cd stress, exposure to elevated temperature resulted in a significant decrease of lipid peroxidation (LPO) level in liver and in a significant increase in the activity of chymotrypsin-like 20S proteasome in both studied tissues of C. gobio. Overall, the present results indicated that elevated temperature and cadmium exposure independently influenced the antioxidant defense system in bullhead with clear tissue-specific and stress-specific antioxidant responses. Further, elevated temperature affected the hepatic lipid peroxidation and the activity of 20S proteasome in both tissues.  相似文献   

6.
Ultraprofound hypothermia (< 5 degrees C) induces changes to cell membranes such as liquid-to-gel lipid transitions and oxidative stress that have a negative effect on membrane function and cell survival. We hypothesized that fatty acid substitution of endothelial cell lipids and alterations in their unsaturation would modify cell survival at 0 degrees C, a temperature commonly used during storage and transportation of isolated cells or tissues and organs used in transplantation. Confluent bovine aortic endothelial cells were treated with 18-carbon fatty acids (C18:0, C18:1n-9, C18:2n-6, or C18:3n-3), C20:5n-3 or C22:6n-3 (DHA), and then stored at 0 degrees C without fatty acid supplements. Storage of control cells caused the release of lactate dehydrogenase (LDH) and a threefold increase in lipid peroxidation (LPO) when compared to control cells not exposed to cold. Pre-treating cells with C18:0 decreased the unsaturation of cell lipids and reduced LDH release at 0 degrees C by 50%, but all mono- or poly-unsaturated fatty acids increased injury in a concentration-dependent manner and as the extent of fatty acid unsaturation increased. DHA-treatment increased cell fatty acid unsaturation and caused maximal injury at 0 degrees C, which was prevented by lipophilic antioxidants BHT or vitamin E, the iron chelator deferoxamine, and to a lesser extent by vitamin C. Furthermore, the cold-induced increase in LPO was reduced by C18:0, vitamin E, or DFO but enhanced by DHA. In conclusion, the findings implicate iron catalyzed free radicals and LPO as a predominant mechanism of endothelial cell injury at 0 degrees C, which may be reduced by increasing lipid saturation or treating cells with antioxidants.  相似文献   

7.
Glutathione peroxidase (GSHPx), a seleno-enzyme, reduces lipid hydroperoxides while producing oxidized glutathione (GSSG), which can efflux from cells. To study the role of GSHPx in antioxidant defense, isolated lungs from selenium-deficient rats were perfused for 2 h with or without 1 mM paraquat. Perfusate GSSG was measured as an index of GSHPx activity, and malondialdehyde (MDA) as an index of lipid peroxidation. Selenium deficiency decreased lung GSHPx activity 75-80%. During perfusion control lungs showed GSSG efflux of 8.5 +/- 4.5 nmol/h and with paraquat 49.1 +/- 12.1 nmol/h. Selenium-deficient lungs with or without paraquat showed GSSG efflux of 16.4 +/- 5.3 and 13.7 +/- 8.9 nmol/h, respectively. MDA efflux occurred only in paraquat-perfused selenium-deficient lungs (7.8 +/- 2.7 nmol/h). Lung homogenates from this group had lower GSH + GSSG than the other three groups. These results indicate an inverse correlation between GSSG efflux and MDA accumulation from paraquat-perfused lungs and suggest that increased turnover of the GSHPx reaction protects paraquat-perfused lungs from lipid peroxidation.  相似文献   

8.
Cyclophosphamide causes lung injury in rats through its ability to generate free radicals with subsequent endothelial and epithelial cell damage. In order to observe the protective effects of a potent anti-inflammatory antioxidant, curcumin (diferuloyl methane) on cyclophosphamide-induced early lung injury, healthy pathogen free male Wistar rats were exposed to 20 mg/100 g body weight of cyclophosphamide, intraperitoneally as a single injection. Prior to cyclophosphamide intoxication oral administration of curcumin was performed daily for 7 days. At various time intervals (2, 3, 5 and 7 days post insult) serum and lung samples were analyzed for angiotensin converting enzyme, lipid peroxidation, reduced glutathione and ascorbic acid. Bronchoalveolar lavage fluid was analyzed for biochemical constituents. The lavage cells were examined for lipid peroxidation and glutathione content. Excised lungs were analyzed for antioxidant enzyme levels. Biochemical analyses revealed time course increases in lavage fluid total protein, albumin, angiotensin converting enzyme (ACE), lactate dehydrogenase, N-acetyl--D-glucosaminidase, alkaline phosphatase, acid phosphatase, lipid peroxide levels and decreased levels of glutathione (GSH) and ascorbic acid 2, 3, 5 and 7 days after cyclophosphamide intoxication. Increased levels of lipid peroxidation and decreased levels of glutathione and ascorbic acid were seen in serum, lung tissue and lavage cells of cyclophosphamide groups. Serum angiotensin converting enzyme activity increased which coincided with the decrease in lung tissue levels. Activities of antioxidant enzymes were reduced with time in the lungs of cyclophosphamide groups. However, a significant reduction in lavage fluid biochemical constituents, lipid peroxidation products in serum, lung and lavage cells with concomitant increase in antioxidant defense mechanisms occurred in curcumin fed cyclophosphamide rats. Therefore, our results suggest that curcumin is effective in moderating the cyclophosphamide induced early lung injury and the oxidant-antioxidant imbalance was partly abolished by restoring the glutathione (GSH) with decreased levels of lipid peroxidation.  相似文献   

9.
The aim of the present work was to investigate the effects of osmoconditioning on chilling injury in soybean (Glycine max (L.) Merr.) seeds during imbibition. Soybean seeds germinated readily over a large range of temperatures (10-35 degrees C), the thermal optimum being 25-30 degrees C. Low temperatures reduced the germination rate and no seed germinated at 1 degrees C. Pre-treatment of seeds at 1 degrees C reduced further germination at the optimal temperature (25 degrees C). This deleterious effect of chilling increased with duration of the treatment, and was maximal after 4 days. Osmoconditioning of seeds at 20 degrees C with a polyethylene glycol-8000 solution at -1.5 MPa for at least 24 h followed by drying back the seeds to their initial moisture content reduced their chilling sensitivity and even allowed germination at 1 degrees C. Chilling of control seeds resulted in a sharp decline in in vivo ACC-dependent ethylene production and in an increase in electrolyte leakage in the medium, which indicated deterioration of membrane properties. Osmoconditioned seeds placed at 1 degrees C did not show any reduction in their ability to convert ACC to ethylene nor any strong increase in electrolyte leakage. Imbibition of both control and osmoconditioned seeds at 1 degrees C resulted in a marked increase in ATP level (more than 50% of the total nucleotides) and energy charge; however, the latter cannot be considered as an indicator of chilling since it remained high (0.74-0.88) throughout the cold treatment. Chilling treatment longer than 6 days induced accumulation of malondialdehyde in the embryonic axis, which was more marked in control seeds than in osmoconditioned seeds, suggesting that chilling sensitivity was associated with lipid peroxidation. Imbibition of seeds at 1 degrees C resulted in an increase in superoxide dismutase, catalase and glutathione reductase activity, which was generally higher in osmoconditioned seeds than in control ones. This stimulation of the antioxidant defence systems occurred during the 4 first days of chilling and decreased then in control seeds while it remained high in osmoconditioned ones. Re-warming seeds at 25 degrees C resulted in an increase in all enzyme activity involved in antioxidant defence. However this effect of re-warming decreased in control seeds after 4 days of chilling, whereas it was maintained in osmoconditioned seeds.  相似文献   

10.
This study was designed to study xanthine oxidase (XO) and xanthine dehydrogenase (XD) activity in the lung of rats exposed to prolonged restraining immobilization stress. Immobilization caused more than twofold increase of xanthine oxidase activity in the rat lung. The activity of xanthine oxidase decreased in lung homogenates incubated at -20 degrees C for 24 h. The same incubation of homogenates from control rats caused a non-significant increase of the activity. No measurable NAD(+)-dependent xanthine dehydrogenase activity could be established in the lungs of both control rats and rats subjected to immobilization. All rats revealed methylene blue-dependent xanthine dehydrogenase activity which was more than two-times higher in the immobilized animals. Incubation at -20 degrees C for 24 h increased the methylene blue-dependent xanthine dehydrogenase activity in homogenates from control rats and decreased the enzyme activity in homogenates from immobilized rats. A working hypothesis was proposed for the sequence of events explaining the results obtained: XO-catalyzed generation of activated oxygen species may take place in the initiation of lipid peroxidation in the lung of rats immobilized for prolonged periods of time.  相似文献   

11.
The effects of high hemoglobin-oxygen affinity (HOA) on rectal temperature and lipid free radical oxidation were investigated in red blood cells, heart, liver and kidneys of male rats during fever. Fever was induced by intraperitoneal injection of Salmonella typhi lipopolysaccharide (LPS; 5.0 mg kg(-1)). HOA was increased by addition of 0.5% sodium cyanate to drinking water for eight weeks. HOA modification (actual half-saturation oxygen pressure, P50act, decreased to 23.3+/-0.7 vs. 31.6+/-0.7 Torr in control; p < 0.001) weakened a febrile response: rise of temperature after 4 hours was 0.79+/-0.2 degrees C vs. 1.38+/-0.1 degrees C in rats with normal HOA (p < 0.05). In red cells and tissues of rats with normal HOA, concentrations of conjugated dienes and Schiff bases increased during fever, and alpha-tocopherol level and catalase activity decreased. Rats with increased HOA had an inverse pattern of such changes. Changes in rectal temperature and markers of free radical oxidation correlated with a shift of oxyhemoglobin dissociation curve leftwards. The present results indicate that the intentional increment of HOA may substantially diminish lipid peroxidation activity, increase the body antioxidant content during fever and decrease the febrile response on LPS.  相似文献   

12.
Activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glucose-6-phophate dehydrogenase (G6PDH) were measured in four tissues of goldfish, Carassius auratus L., over 1-12 h of high temperature (35 degrees C) exposure followed by 4 or 24 h of lower temperature (21 degrees C) recovery. SOD activity was strongly affected by heat shock, increasing 4-fold in brain, liver, and kidney, but was mainly reversed at recovery. In some tissues, activities of SOD, catalase, GPx, and G6PDH decreased significantly after 1 h heat shock exposure suggesting that thermal inactivation possibly occurred, but were renewed at further exposure. In many cases, 4 h of return to the initial temperature decreased enzyme activities. High correlation coefficients between SOD activities and levels of lipid peroxidation products suggest that these products might be involved in up-regulation of antioxidant defense. Several enzymes (SOD, GST, GR) responded to stress in coordinated manner.  相似文献   

13.
Five Coffea genotypes differing in their sensitivity to low positive temperatures were compared with regard to the effects of chilling on membrane integrity, as well as their ability to recover from cold-induced injury upon re-warming. Membrane damage was evaluated through electrolyte leakage, changes in membrane lipid composition and malondialdehyde (MDA) production in control conditions (25/20 degrees C, day/night), after a gradual temperature decrease period to 15/10 degrees C, after chilling treatment (3 nights at 4 degrees C) and upon re-warming to 25/20 degrees C during 6 days (recovery). C. dewevrei showed the highest electrolyte leakage at 15/10 degrees C and after chilling. This was due mainly to lipid degradation observed at 15/10 degrees C, reflecting strong membrane damage. Furthermore, MDA production after chilling conditions indicated the occurrence of lipid peroxidation. A higher susceptibility of C. dewevrei to cold also was inferred from the complete absence of recovery as regards permeability, contrary to what was observed in the remaining plants. Apoat? and Piat? presented significant leakage values after chilling. However, such effects were reversible under recovery conditions. Exposure to cold (15/10 degrees C and 3 x 15/4 degrees C) did not significantly affect membrane permeability in Catuaí and Icatú. Furthermore, no significant MDA production was observed even after chilling treatments in Apoat?, Piat?, Catuaí and Icatú, suggesting that the four genotypes had the ability to maintain membrane integrity and/or repair membrane damage caused by low temperatures. Apoat?, Piat? and, to a lower extent, Catuaí, were able to cope with gradual temperature decrease through an enhanced lipid biosynthesis. After acclimation, Piat? and Catuaí showed a lowering of digalactosyldiacylglycerol to monogalactosyldiacylglycerol ratio (MGDG/DGDG) as a result of enhanced DGDG synthesis, which represents an increase in membrane stability. The same was observed in Apoat? after chilling, in spite of phospholipids decrease. The studied parameters clearly indicated that chilling induced irreversible membrane damage in C. dewevrei. We also concluded that increased lipid synthesis, lower MGDG/DGDG ratio, and changes in membrane unsaturation occurring during acclimation to low temperatures may be critical factors in maintenance of cellular integrity under chilling.  相似文献   

14.
Environmental agents may enter the lung via the tracheobronchial tree or via the bloodstream. They can interact with lung cell metabolism and set in motion a sequence of events that leads to damage, adaptation, and repair. Biochemical signs of lung damage described include lipid peroxidation, decreased biosynthesis of macromolecules, depressed enzyme activities, and the binding of metabolites of the offending agent to tissue macromolecules. As a response to acute damage, lung can activate several biochemical pathways. The selenium-glutathione peroxidase system affords protection against lipid peroxidation and increased activity of superoxide dismutase provides oxygen tolerance. Biochemical adaptation occasionally occurs very quickly: the herbicides paraquat and diquat produce an acute loss of cellular NADPH in lung. This is accompanied by a sudden increase in pentose phosphate pathway activity. Biochemical events accompanying tissue repair following lung injury are increased synthesis of nucleic acids and of protein and enhanced enzymatic activity. The repair following lung damage caused by drugs may be inhibited by oxygen.  相似文献   

15.
In vitro storage of turkey spermatozoa is performed without consideration of the potential role of seminal plasma on sperm functions. We report the effects of seminal plasma on membrane permeability, lipid metabolism, energy status, motility and fertility of turkey spermatozoa stored at 4 or 20 degrees C. Phospholipid content (1077 nmol/10(9) spz versus 1219 nmol/10(9) spz at 48 h) and membrane permeability of spermatozoa were significantly damaged by the presence of seminal plasma after 48 h of storage at 4 degrees C, whereas damage to ATP content and fertility occurred earlier damaged by this presence (fertility after 24h storage 51% with seminal plasma versus 71% without). At 20 degrees C, seminal plasma decreased the phospholipid content of spermatozoa in the first hour of storage (1326 nmol/10(9) spz versus 1636 nmol/10(9) spz). Twenty-four hours later, this effect was masked by intense lipid peroxidation. These results show that seminal plasma is deleterious to storage of turkey spermatozoa at 4 degrees C and is involved in phospholipid metabolism of spermatozoa. Lipid peroxidation could be responsible for the acceleration of the degradation of sperm phospholipids during storage at 20 degrees C. However, lipid peroxidation seems not to be active at 4 degrees C. In this case, we suggest that phospholipase activation may contribute to sperm degradation, especially in the presence of seminal plasma.  相似文献   

16.
The effects of chromium (chromium picolinate, CrPic) and zinc (ZnSO(4)H(2)O) supplementation on serum concentrations of malondialdehyde (MDA) (an indicator of lipid peroxidation) and serum status of some antioxidant vitamins and minerals of laying hens (Hy-Line) reared at a low ambient temperature (6.8 degrees C) were evaluated. One hundred twenty laying hens (Hy-Line; 32 wk old) were divided into 4 groups, 30 hens per group. The hens were fed either a basal diet or the basal diet supplemented with either 0.4 mg Cr/kg of diet, 30 mg Zn/kg of diet, or 0.4 mg Cr plus 30 mg Zn/kg of diet. Digestibility of nutrients (dry matter [DM], organic matter [OM], crude protein [CP], and ether extract [EE]) increased by supplementation of chromium and zinc (p < 0.05). Supplemental chromium and zinc increased serum vitamins C and E but decreased MDA concentrations (p < 0.05). Additionally, supplemental chromium and zinc caused an increase in the serum concentrations of Fe, Zn, Mn, and Cr (p < 0.05). The present study showed that low ambient temperature causes detrimental effects on the digestibility of nutrients and antioxidant status and that such detrimental effects caused by low ambient temperature can be alleviated by chromium and zinc supplementation, particularly when Cr and Zn were simultaneously included into the diet. Data obtained in the present study suggest that such supplementation can be considered as a protective management practice in a diet of laying hens for alleviating negative effects of cold stress.  相似文献   

17.
The effect of lipid composition of liposomes on peroxidation induced by ferrous ion and ascorbate was examined. Temperature affects the sensitivity of liposomes; the peroxidation rate was increased with increase of the incubation temperature. With liposomes consisting of 1-palmitoyl-2-arachidonyl phosphatidylcholine (substrate) and a peroxidation-insensitive lipid, 1-palmitoyl-2-oleoyl phosphatidylcholine, peroxidation was dependent on the density of the substrate. No appreciable peroxidation was observed with liposomes containing less than 10 mol% of the substrate at 37 degrees C. When 1 mol substrate was mixed with 9 mol dimyristoyl phosphatidylcholine, peroxidation occurred below 10 degrees C, but not above 20 degrees C. Above 20 degrees C, the substrates should be located homogeneously on the membranes, whereas they should be clustered below 10 degrees C, since the gel-liquid crystalline phase transition temperature of matrix membrane of dimyristoylphosphatidylcholine was 17-21 degrees C. Peroxidation of liposomes consisting of 1-palmitoyl-2-arachidonyl phosphatidylcholine was also suppressed by cholesterol. These findings indicate that the lateral distribution as well as the density of the substrate on membranes affects the sensitivity of the substrate to peroxidation. It was also found that alpha-tocopherol is preferentially located in the 1-palmitoyl-2-arachidonyl phosphatidylcholine-rich regions of membranes consisting of mixed phospholipids, and efficiently suppresses peroxidation of liposomal lipids.  相似文献   

18.
The effects of thermal stress and vitamin C were examined on the lipid peroxidation and fatty acid composition in the liver of thornfish. Small thornfish were cultured at 28, 32 and 36 degrees C and then fed diets with 0, 80, 400 and 2000 ppm vitamin C-supplement, respectively, for 8 weeks. Fish fed a diet without vitamin C supplement and cultured at 36 degrees C showed the highest values of hepatosomatic index and malondialdehyde, followed by fish fed a diet without vitamin C supplement and cultured at 32 degrees C. Lipid peroxidation in the liver of fish was elevated by high water temperature and prevented by vitamin C. The % of polyunsaturated fatty acid (PUFA) in the liver lipid was higher when fish were cultured at the lower water temperature. Vitamin C significantly reduced the % of PUFA and increased the % of saturated fatty acid (SFA) in the liver lipid. The % of SFA in the liver lipid was not affected by water temperature. We conclude that temperature and vitamin C significantly affected the lipid characters of liver in thornfish.  相似文献   

19.
Somatic embryos of Eleutherococcus senticosus were exposed at 12, 16, 24 and 30 °C for duration of 45 days in bioreactor. The effects of such treatments on the growth, eleutheroside B, E, E1, total phenolics, flavonoids, chlorogenic acid concentrations and antioxidant enzymes activities were investigated. The results revealed that low (12 and 18 °C) and high (30 °C) temperature caused significant decrease in fresh weight (FW), dry weight (DW), total phenolics, flavonoids and total eleutheroside accumulation, while low temperature increased eleutheroside E accumulation in somatic embryos. Low temperature significantly increased superoxide dismutase (SOD), catalase (CAT), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities whereas a strong increase in ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activity was obtained at 12 °C grown somatic embryos. In contrast, high temperature significantly decreased antioxidant enzymes activities and even guaiacol peroxidase (G-POD) activity also decreased at low temperature in comparison to 24 °C grown embryos. These data suggest that low and high temperature treatment provoked an oxidative stress in E. senticosus embryos, as shown by the increase in lipid peroxidation. The increase in lipid peroxidation was paralleled by a rise in lipoxygenase (LOX) activity and hydrogen peroxide (H2O2) content. However, this stress was more prominent at high temperature than low temperature grown embryos. This result suggests that the reduced growth of embryo at 30 °C was concomitant with reduced efficiency of these protective enzymes. On the other hand, increases in antioxidant activities at 12 and 18 °C could also be a response to the cellular damage; however, this increase could not stop the deleterious effects of low temperature, but reduced stress severity thus allowing embryo growth to occur.  相似文献   

20.
The in vivo paraquat-induced oxidative stress in rat tissue was studied by analyzing cholesterol-derived hydroperoxide as an index of lipid peroxidation. Paraquat (10 mg/kg) was administered i.p. to rats. Rats were sacrificed and lung, liver, and kidney were collected 2, 24 h, and 5 d after paraquat injection. Lipids were extracted and analyzed by HPLC with post-column chemiluminescence. We found that two cholesterol-derived hydroperoxides, 7alpha-hydroperoxycholest-5-en-3beta-ol (7alpha-OOH) and 7beta-hydroperoxycholest-5-en-3beta-ol (7beta-OOH) were present in lungs of control animals (0.06 and 0.06 nmol/g, respectively), in livers (6.5 and 15.8 nmol/g, respectively) and in kidneys (3.7 and 8.9 nmol/g, respectively). In liver paraquat increased lipid peroxidation approximately by 60% over the levels of control animals only at 2 h after paraquat treatment. In kidney, augmented lipid peroxidation, 7alpha-OOH and 7beta-OOH (by 70% and 147%, respectively) above levels was found at 2 h after paraquat treatment. Interestingly, these increase remained in kidney of rats 5 d after a single dose of paraquat. In contrast, cholesterol-derived hydroperoxides were not affected in lung of paraquat dosed rats. This is the first report on 7alpha-OOH and 7beta-OOH accumulations in rat liver and kidney, and it seems to reflect greater oxidative stress in the pathology of kidney of rats treated with acute paraquat at low dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号