首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to characterize the bimolecular interface between parathyroid hormone (PTH) and its human receptor PTH1-Rc (hPTH1-Rc), we previously identified two contact sites in the receptor: one for position 1 and another for position 13 (located at the ends of the principal activation domain) in PTH(1-34). The present study reports a third, novel "contact site" between hPTH1-Rc and Lys(27) of PTH(1-34). Lys(27) is located in the principal binding domain of the hormone (residues 25-34). The photoreactive PTH(1-34) analogue K27 contains a benzophenone (BP) moiety on Lys(27). The analogue binds to stably transfected HEK 293/C-21 cells (which express a high level of recombinant hPTH1-Rc) and stimulates adenylyl cyclase activity with a potency similar to PTH(1-34). In addition, (125)I-K27 cross-links effectively and specifically to the hPTH1-Rc. Enzymatic (Glu-C and Lys-C) and chemical (CNBr and BNPS-skatole) digestions of the photoconjugate between (125)I-K27 and hPTH1-Rc were performed. In addition, photoconjugates involving the bioactive mutants [L261M]- and [R262K]-hPTH1-Rc, transiently expressed in COS-7 cells, were also digested. The data obtained clearly identify L(261) or R(262) of the first extracellular loop of hPTH1-Rc as the contact site for Lys(27) in the hormone. On the basis of (i) the similarity in molecular mass between the CNBr digest of the (125)I-K27-[L261M]hPTH1-Rc conjugate and free (125)I-K27 and (ii) the failure to cross-link (125)I-K27 to a bioactive mutant receptor [L261A]hPTH1-Rc, we conclude that L(261) is the cross-linking site. These results provide the first demonstration of an interaction between the principal binding domain of PTH and the first extracellular loop of hPTH1-Rc. Revealing proximity of Lys(27) (in PTH) to L(261) (in hPTH1-Rc) provides additional insight into the nature of the ligand-receptor bimolecular interface and clearly illustrates that the extracellular loops of the receptor contribute to the specificity of the PTH-PTH1-Rc interaction. Taken together with previous studies, the new findings add important constraints on the possible positioning of the C-terminal helix of PTH (which contains the principal binding domain) relative to the first extracellular loop and the distal C-terminal helix of the large extracellular amino terminal domain of the PTH1-Rc.  相似文献   

2.
The first 4 residues of parathyroid hormone (PTH) are highly conserved in evolution and are important for biological activity. We randomly mutated codons 1-4 of human PTH (hPTH) with degenerate oligonucleotides and, after expression in COS cells, screened the mutants for receptor binding and cAMP-stimulating activity using ROS 17/2.8 cells. This survey identified Glu4 and Val2 as important determinants of receptor binding and activation, respectively. Positions 1 and 3 were more tolerant of substitutions indicating that these sites are less vital to hormone function. Activities of synthetic hPTH(1-34) analogs further demonstrated the importance of positions 2 and 4. The binding affinity of [Ala4,Tyr34] hPTH(1-34)NH2 was 100-fold reduced relative to [Tyr34]hPTH(1-34)NH2 (Kd values = 653 +/- 270 and 4 +/- 1 nM, respectively), and [Arg2, Tyr34]hPTH(1-34)NH2 was a weak partial agonist which bound well to the ROS cell receptor (Kd = 31 +/- 10 nM). The Arg2 analog was nearly as potent as PTH(3-34) as an in vitro PTH antagonist in osteoblast derived cells. However, unlike PTH(3-34), [Arg2]PTH was a full agonist in opossum kidney (OK) cells. These observations suggest that the activation domains of the OK and ROS cell PTH receptors are different. Thus, amino-terminal PTH analogs may be useful as probes for distinguishing properties of PTH receptors.  相似文献   

3.
The specific localization and the characterization of the parathyroid hormone (PTH) receptor in bone have been studied using 18-d embryonic chick calvariae and biologically active, electrolytically labeled [125I] bovine PTH(1-34). Binding was initiated by adding [125I]-bPTH(1-34) to bisected calvariae at 30 degrees C. Steady state binding was achieved at 90 min at which time 10 mg drg wt of calvaria specifically bound 17% of the added [125I]bPTH(1-34). Nonspecific binding in the presence of 244 nM unlabeled bPTH(1-34) was less than 2%. Insulin, glucagon, and calcitonin (1 microgram/ml) did not compete for PTH binding sites. Half-maximal inhibition of binding was achieved at concentrations of unlabeled bPTH(1-34) or bPTH(1-84) of about 10 nM. The range of concentration (2-100 nM) over which bPTH(1-34) and bPTH(1-84) stimulated cyclic 3'5'adenosine monophosphate (cAMP) production was similar to that which inhibited the binding of [125I]bPTH(1-34). Light microscope autoradiograms showed that grains were concentrated over cells (osteoblasts and progenitor cells) at the external surface of the calvariae and in trabeculae. In the presence of excess unlabeled PTH, labeling of control autoradiograms was reduced to near background levels. No labeling of osteocytes or osteoclasts was observed. At the electron microscopic level, grains were localized primarily over cell membranes. A quantitative analysis of grain distribution suggested that cellular internalization of PTH occurred.  相似文献   

4.
T Mine  I Kojima    E Ogata 《The Biochemical journal》1989,258(3):889-894
The synthetic 1-34 fragment of human parathyroid hormone (1-34hPTH) stimulated glucose production in isolated rat hepatocytes. The effect of 1-34hPTH was dose-dependent and 10(10) M-1-34 hPTH elicited the maximum glucose output, which was approx. 80% of that by glucagon. Although 1-34hPTH induced a small increase in cyclic AMP production at concentrations higher than 10(-9) M, 10(-10) M-1-34hPTH induced the maximum glucose output without significant elevation of cyclic AMP. This is in contrast to the action of forskolin, which increased glucose output to the same extent as 10(-10) M-1-34hPTH by causing a 2-fold elevation of cyclic AMP. In addition to increasing cyclic AMP, 1-34hPTH caused an increase in cytoplasmic free calcium concentration ([Ca2+]c). When the effect of 1-34hPTH on [Ca2+]c was studied in aequorin-loaded cells, low concentrations of 1-34hPTH increased [Ca2+]c: the 1-34hPTH effect on [Ca2+]c was detected at as low as 10(-12) M and increased in a dose-dependent manner. 1-34hPTH increased [Ca2+]c even in the presence of 1 microM extracellular calcium, suggesting that PTH mobilizes calcium from an intracellular pool. In line with these observations, 1-34hPTH increased the production of inositol trisphosphate. These results suggest that: (1) PTH activates both cyclic AMP and calcium messenger systems and (2) PTH stimulates glycogenolysis mainly via the calcium messenger system.  相似文献   

5.
Mechanisms of ligand binding to the PTH/PTHrP receptor (PTHR) were explored using PTH fragment analogs as radioligands in binding assays. In particular, the modified amino-terminal fragment analog, (125)I-[Aib(1,3),Nle8,Gln10,homoarginine11,Ala12,Trp14,Tyr15]rPTH(1-15)NH2, (125)I-[Aib(1,3),M]PTH(1-15), was used as a radioligand that we hypothesized to bind solely to the juxtamembrane (J) portion of the PTHR containing the extracellular loops and transmembrane helices. We also employed (125)I-PTH(1-34) as a radioligand that binds to both the amino-terminal extracellular (N) and J domains of the PTHR. Binding was examined in membranes derived from cells expressing either wild-type or mutant PTHRs. We found that the binding of (125)I-[Aib(1,3),M]PTH(1-15) to the wild-type PTHR was strongly (approximately 90%) inhibited by guanosine 5'-O-(3-thio)triphosphate (GTPgammaS), whereas the binding of (125)I-PTH(1-34) was only mildly (approximately 25%) inhibited by GTPgammaS. Of these two radioligands, only (125)I-[Aib(1,3),M]PTH(1-15) bound to PTHR-delNt, which lacks most of the receptor's N domain, and again this binding was strongly inhibited by GTPgammaS. Binding of (125)I-[Aib(1,3),M]PTH(1-15) to the constitutively active receptor, PTHR-H223R, was only mildly (approximately 20%) inhibited by GTPgammaS, as was the binding of (125)I-PTH(1-34). In membranes prepared from cells lacking Galpha(S) via knockout mutation of Gnas, no binding of (125)I-[Aib(1,3),M]PTH(1-15) was observed, but binding of (125)I-[Aib(1,3),M]PTH(1-15) was recovered by virally transducing the cells to heterologously express Galpha(S). (125)I-PTH(1-34) bound to the membranes with or without Galpha(S). The overall findings confirm the hypothesis that (125)I-[Aib(1,3),M]PTH(1-15) binds solely to the J domain of the PTHR. They further show that this binding is strongly dependent on coupling of the receptor to Galpha(S)-containing heterotrimeric G proteins, whereas the binding of (125)I-PTH(1-34) can occur in the absence of such coupling. Thus, (125)I-[Aib(1,3),M]PTH(1-15) appears to function as a selective probe of Galpha(S)-coupled, active-state PTHR conformations.  相似文献   

6.
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) exert their calciotropic activities by binding to a specific seven-transmembrane-helix-containing G protein-coupled receptor mainly located in bone and kidney cells. In order to map in detail the nature of hormone-receptor interaction, we are employing 'photoaffinity scanning' of the bimolecular interface. To this end, we have developed photoreactive benzophenone (BP)-containing PTH analogs which can be specifically and efficiently cross-linked to the human (h) PTH/PTHrP receptor. In this report, we describe the photocross-linking of a BP-containing PTH antagonist, [Nle8,18,D-2-Nal12,Lys13(epsilon-BP),2-Nal23,Tyr34]bPT H(7-34)NH2 (ANT) to the recombinant hPTH/PTHrP receptor stably expressed in human embryonic kidney cells (HEK-293, clone C-21). This photoreactive antagonist has high affinity for the hPTH/PTHrP receptor and inhibits agonist-induced cyclase activity and intracellular calcium release. The photo-induced cross-linking of the radioiodinated antagonist (125I-ANT) to the recombinant hPTH/PTHrP receptor followed by SDS-PAGE analysis reveals a single radiolabeled band of approximately 85kDa, similar to that observed after cross-linking of a radioiodinated BP-containing agonist. The formation of this covalent 125I-ANT - hPTH/PTHrP receptor conjugate is competed dose-dependently by a variety of unlabelled PTH- and PTHrP-derived agonists and antagonists. This is the first report of a specific and efficient photocross-linking of a radioiodinated PTH antagonist to the hPTH/PTHrP receptor. Therefore, it provides the opportunity to study directly the nature of the bimolecular interaction of PTH antagonist with the hPTH/PTHrP receptor.  相似文献   

7.
Bovine parathyroid hormone (PTH) 1-34 [bPTH(1-34)] and human PTH related protein [hPTHrP(1-34)] stimulated cAMP accumulation in opossum kidney (OK) cells with Km of 5 x 10(-9) M, but inhibition of phosphate uptake was obtained with 17-fold lower Km of 3 x 10(-10) M. Phosphate uptake was partially inhibited with [Nle8.18Tyr34]bPTH(3-34)NH2 without concomitant cAMP stimulation. With hPTHrP(7-34)NH2, cAMP accumulation was increased in parallel to inhibition of phosphate uptake. [D-Trp12Tyr34]bPTH(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 had no agonist activity on cellular cAMP and inhibition of phosphate uptake. bPTH(1-34)-stimulated cAMP accumulation was antagonized by [Nle8.18Tyr34]bPTH(3-34)NH2, [D-Trp12Tyr34]bPTH(7-34)NH2, hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 with Ki of 1.4 x 10(-7), 2 x 10(-7), 4.7 x 10(-7) and 3.7 x 10(-6) M, respectively. But [Nle8.18Tyr34]bPTH(3-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2 reversed the inhibition of phosphate uptake only marginally, and hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 were inactive. With hPTHrP(1-34) the Ki for cAMP accumulation of [Nle8,18Tyr34]bPTH(3-34)NH2 and hPTHrP(7-34)NH2 were 1.9 x 10(-7) and 7.2 x 10(-7) M, and inhibition of phosphate uptake was partially reversed with [Nle8,18Tyr34]bPTH(3-34)NH2, but not with hPTHrP(7-34)NH2. The present results indicate that truncated hPTHrP(7-34)NH2, unlike [Tyr34]hPTH(7-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2, elevates cellular cAMP and inhibits phosphate uptake. bPTH(1-34)- and hPTHrP(1-34)-evoked cAMP accumulation is suppressed by PTH and PTHrP fragments while inhibition of phosphate uptake remains largely unaltered.  相似文献   

8.
The human parathyroid hormone (PTH) receptor (hPTH1R), containing a 9-amino acid sequence of rhodopsin at its C terminus, was transiently expressed in COS-7 cells and solubilized with 0.25% n-dodecyl maltoside. Approximately 18 microg of hPTH1R were purified to homogeneity per mg of crude membranes by single-step affinity chromatography using 1D4, a monoclonal antibody to a rhodopsin epitope. The N terminus of the hPTH1R is Tyr(23), consistent with removal of the 22-amino acid signal peptide. Comparisons of hPTH1R by quantitative immunoblotting and Scatchard analysis revealed that 75% of the receptors in membrane preparations were functional; there was little, if any, loss of functional receptors during purification. The binding affinity of the purified hPTH1R was slightly lower than membrane-embedded hPTH1R (K(d) = 16.5 +/- 1.3 versus 11.9 +/- 1.9 nm), and the purified receptors bound rat [Nle(8,21),Tyr(34)]PTH-(1-34)-NH(2) (PTH-(1-34)), and rat [Ile(5),Trp(23),Tyr(36)]PTHrP-(5-36)-NH(2) with indistinguishable affinity. Maximal displacement of (125)I-PTH-(1-34) binding by rat [alpha-aminoisobutyric acid (Aib)(1,3),Nle(8),Gln(10),Har(11),Ala(12),Trp(14),Arg(19),Tyr(21)]PTH-(1-21)-NH(2) and rat [Aib(1,3),Gln(10),Har(11),Ala(12),Trp(14)]PTH-(1-14)-NH(2) of 80 and 10%, respectively, indicates that both N-terminal and juxtamembrane ligand binding determinants are functional in the purified hPTH1R. Finally, PTH stimulated [(35)S]GTP gamma S incorporation into G alpha(s) in a time- and dose-dependent manner, when recombinant hPTH1R, G alpha(s)-, and beta gamma-subunits were reconstituted in phospholipid vesicles. The methods described will enable structural studies of the hPTH1R, and they provide an efficient and general technique to purify proteins, particularly those of the class II G protein-coupled receptor family.  相似文献   

9.
Current antagonists for the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor (PTHR) are N-terminally truncated or N-terminally modified analogs of PTH(1-34) or PTHrP(1-34) and are thought to bind predominantly to the N-terminal extracellular (N) domain of the receptor. We hypothesized that ligands that bind only to PTHR region comprised of the extracellular loops and seven transmembrane helices (the juxtamembrane or J domain) could also antagonize the PTHR. To test this, we started with the J domain-selective agonists [Gln(10),Ala(12),Har(11),Trp(14),Arg(19) (M)]PTH(1-21), [M]PTH(1-15), and [M]PTH(1-14), and introduced substitutions at positions 1-3 that were predicted to dissociate PTHR binding and cAMP signaling activities. Strong dissociation was observed with the tri-residue sequence diethylglycine (Deg)(1)-para-benzoyl-l-phenylalanine (Bpa)(2)-Deg(3). In HKRK-B7 cells, which express the cloned human PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21), [Deg(1,3),Bpa(2),M]PTH(1-15), and [Deg(1,3),Bpa(2),M]PTH(1-14) fully inhibited (IC(50)s = 100-700 nm) the binding of (125)I-[alpha-aminoisobutyric acid(1,3),M]PTH(1-15) and were severely defective for stimulating cAMP accumulation. In ROS 17/2.8 cells, which express the native rat PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) antagonized the cAMP-agonist action of PTH(1-34), as did PTHrP(5-36) (IC(50)s = 0.7 microm, 2.6 microm, and 36 nm, respectively). In COS-7 cells expressing PTHR-delNt, which lacks the N domain of the receptor, [Deg(1,3),Bpa(2), M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) inhibited the agonist actions of [alpha-aminoisobutyric acid(1,3)]PTH(1-34) and [M]PTH(1-14) (IC(50)s approximately 1 microm), whereas PTHrP(5-36) failed to inhibit. [Deg(1,3),Bpa(2),M]PTH(1-14) inhibited the constitutive cAMP-signaling activity of PTHR-tether-PTH(1-9), in which the PTH(1-9) sequence is covalently linked to the PTHR J domain, as well as that of PTHR(cam)H223R. Thus, the J-domain-selective N-terminal PTH fragment analogs can function as antagonists as well as inverse agonists for the PTHR. The new ligands described should be useful for further studies of the ligand binding and activation mechanisms that operate in the critical PTHR J domain.  相似文献   

10.
The effects of the monokines tumor necrosis factor alpha (TNF) and interleukin 1 (IL 1) on parathyroid hormone (PTH)-responsive adenylate cyclase were examined in clonal rat osteosarcoma cells (UMR-106) with the osteoblast phenotype. Recombinant TNF and IL 1 incubated with UMR-106 cells for 48 hr each produced concentration-dependent inhibition of PTH-sensitive adenylate cyclase, with maximal inhibition of PTH response (40% for TNF, 24% for IL 1) occurring at 10(-8) M of either monokine. Both monokines also decreased adenylate cyclase stimulation by the tumor-derived PTH-related protein (PTHrP). In contrast, TNF and IL 1 had little or no inhibitory effect on receptor-mediated stimulation of adenylate cyclase by isoproterenol and nonreceptor-mediated enzyme activation by cholera toxin and forskolin; both monokines increased prostaglandin E2 stimulation of adenylate cyclase. Binding of the radioiodinated agonist mono-[125I]-[Nle8,18, Tyr34]bPTH-(1-34)NH2 to UMR-106 cells in the presence of increasing concentrations of unlabeled [Nle8,18, Tyr34]bPTH-(1-34)NH2 revealed a decline in PTH receptor density (Bmax) without change in receptor binding affinity (dissociation constant, Kd) after treatment with TNF or IL 1. Pertussis toxin increased PTH-sensitive adenylate cyclase activity but did not attenuate monokine-induced inhibition of PTH response. In time course studies, brief (1 hr) exposure of cells to TNF or IL 1 during early culture was sufficient to decrease PTH response but only after exposed cells were subsequently allowed to grow for prolonged periods. Inhibition of PTH response by monokines was blocked by cycloheximide. The results indicate that TNF and IL 1 impair responsiveness to PTH (and PTHrP) by a time- and protein synthesis-dependent down-regulation of PTH receptors linked to adenylate cyclase.  相似文献   

11.
Parathyroid hormone binding to cultured avian osteoclasts.   总被引:3,自引:0,他引:3  
Parathyroid hormone (PTH) increases serum calcium concentration via a controversial cellular mechanism. We investigated whether PTH binds avian osteoclasts. Isolated hypocalcaemic hen osteoclasts were incubated with [125I]--bovine PTH (1-84). Specific binding of the hormone to the cells, which reached the equilibrium within 60 min, was observed. Half maximal binding was reached by 10 min. Binding was competitively inhibited by increasing doses of unlabeled PTH, and was about 55% displaced by adding, at the equilibrium, 10(-6) M unlabeled PTH. Autoradiography demonstrated specific label on the osteoclast. The cellular mechanism activated by the hormone remains to be elucidated.  相似文献   

12.
13.
14.
Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). The purpose of the present study was to identify the contributions of distinct signaling mechanisms to PTH-stimulated activation of the mitogen-activated protein kinases (MAPK) ERK1/2. In Human embryonic kidney 293 (HEK293) cells transiently transfected with hPTH1R, PTH stimulated a robust increase in ERK activity. The time course of ERK1/2 activation was biphasic with an early peak at 10 min and a later sustained ERK1/2 activation persisting for greater than 60 min. Pretreatment of HEK293 cells with the PKA inhibitor H89 or the PKC inhibitor GF109203X, individually or in combination reduced the early component of PTH-stimulated ERK activity. However, these inhibitors of second messenger dependent kinases had little effect on the later phase of PTH-stimulated ERK1/2 phosphorylation. This later phase of ERK1/2 activation at 30-60 min was blocked by depletion of cellular beta-arrestin 2 and beta-arrestin 1 by small interfering RNA. Furthermore, stimulation of hPTH1R with PTH analogues, [Trp1]PTHrp-(1-36) and [d-Trp12,Tyr34]PTH-(7-34), selectively activated G(s)/PKA-mediated ERK1/2 activation or G protein-independent/beta-arrestin-dependent ERK1/2 activation, respectively. It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through beta-arrestins. These findings imply the existence of distinct active conformations of the hPTH1R responsible for the two pathways, which can be stimulated by unique ligands. Such ligands may have distinct and valuable therapeutic properties.  相似文献   

15.
The stimulation of DNA synthesis in primary cell cultures of chicken chondrocytes by parathyroid hormone was studied by assaying [3H]thymidine incorporation into DNA. Optimal assay conditions were determined by varying cell age, plating density, and incubation time. Under these conditions DNA synthesis was significantly stimulated by parathyroid hormone (PTH) and some of its fragments: cells treated with human (h)PTH(1-84), bovine (b)PTH(1-34) and [Nle8,18,Tyr34]bPTH(3-34)amide and hPTH(13-34) displayed 2.6-fold enhanced [3H]thymidine incorporation in a dose-dependent manner. The fragment hPTH(28-48) led to a similar stimulation, whereas [Tyr43]hPTH(43-68) and [Tyr52,Asp76]hPTH(52-84) had no effect. Using a series of synthetic hPTH peptides covering the central region of the hormone molecule (residues 25-47), we could delimitate further this putative mitogenic functional domain to a core region between amino acid residues 30 and 34. The effect of PTH on [3H]thymidine incorporation could not be mimicked by forskolin, indicating that the corresponding signal is not mediated by cAMP. It is, however, inhibited by EGTA and cannot be provoked in the absence of calcium ions in the medium. Therefore, the results presented indicate a hitherto unidentified functional domain of PTH in the central part of the molecule which exerts its mitogenic effect on chondrocytes in a cAMP-independent manner but seems to involve calcium ions for signal transduction.  相似文献   

16.
17.
The N-terminal portion of parathyroid hormone is critical for PTH-1 receptor (P1R) activation and has been postulated to be alpha-helical when bound to the receptor. We investigated whether substitution of the sterically hindered and helix-promoting amino acid alpha-aminoisobutyric acid (Aib) in N-terminal PTH oligopeptides would improve the capacity of the peptide to activate the P1R. Analysis of the effects of individual Aib substitutions at each position in [Ala(3,12),Gln(10),Har(11),Trp(14)]PTH(1-14)NH(2) ([M]PTH(1-14)) on cAMP-stimulating potency in HKRK-B28 cells revealed that Aib at most positions diminished potency; however, Aib at positions 1 and 3 enhanced potency. Thus [Aib(1,3),M]PTH(1-14) was approximately 100-fold more potent than [M]PTH(1-14) (EC(50) = 1.1 +/- 0.1 and 100 +/- 20 nm, respectively), approximately 100,000-fold more potent than native PTH(1-14), and 2-fold more potent than PTH(1-34). The shorter peptide, [Aib(1,3),M]PTH(1-11), was also fully efficacious and 1,000-fold more potent than [M]PTH(1-11) (EC(50) 4 +/- 1 nm versus 3 +/- 1 microm). In cAMP stimulation assays performed in COS-7 cells expressing P1R-delNt, a receptor that lacks most of the N-terminal extracellular domain, [Aib(1,3),M]PTH(1-14) was 50-fold more potent than [M]PTH(1-14) (EC(50) = 0.7 +/- 0.2 versus 40 +/- 2 nm) and 1,000-fold more potent than PTH(1-34) (EC(50) = 700 nm). [Aib(1,3),M]PTH(1-14), but not PTH(1-34), inhibited the binding of (125)I-[Aib(1,3),Nle(8),Gln(10),Har(11),Ala(12),Trp(14),Arg(19),Tyr(21)]PTH(1-21)NH(2) to hP1R-delNt (IC(50) = 1,600 +/- 200 nm). The Aib(1,3) substitutions in otherwise unmodified PTH(1-34) enhanced potency and binding affinity on hP1R-delNt, but they had no effect for this peptide on hP1R-WT. Circular dichroism spectroscopy demonstrated that the Aib-1,3 substitutions increased helicity in all peptides tested, including PTH(1-34). The overall data thus suggest that the N-terminal residues of PTH are intrinsically disordered but become conformationally constrained, possibly as an alpha-helix, upon interaction with the activation domain of the PTH-1 receptor.  相似文献   

18.
PTH and PTHrP use the same G protein-coupled receptor, the PTH/PTHrP receptor (PTHR), to mediate their distinct biological actions. The extent to which the mechanisms by which the two ligands bind to the PTHR differ is unclear. We examined this question using several pharmacological and biophysical approaches. Kinetic dissociation and equilibrium binding assays revealed that the binding of [(125)I]PTHrP(1-36) to the PTHR was more sensitive to GTPgammaS (added to functionally uncouple PTHR-G protein complexes) than was the binding of [(125)I]PTH(1-34) ( approximately 75% maximal inhibition vs. approximately 20%). Fluorescence resonance energy transfer-based kinetic analyses revealed that PTHrP(1-36) bound to the PTHR more slowly and dissociated from it more rapidly than did PTH(1-34). The cAMP signaling response capacity of PTHrP(1-36) in cells decayed more rapidly than did that of PTH(1-34) (t(1/2) = approximately 1 vs. approximately 2 h). Divergent residue 5 in the ligand, Ile in PTH and His in PTHrP, was identified as a key determinant of the altered receptor-interaction responses exhibited by the two peptides. We conclude that whereas PTH and PTHrP bind similarly to the G protein-coupled PTHR conformation (RG), PTH has a greater capacity to bind to the G protein-uncoupled conformation (R(0)) and, hence, can produce cumulatively greater signaling responses (via R(0)-->RG isomerization) than can PTHrP. Such conformational selectivity may relate to the distinct modes by which PTH and PTHrP act biologically, endocrine vs. paracrine, and may help explain reported differences in the effects that the ligands have on calcium and bone metabolism when administered to humans.  相似文献   

19.
Intermittent parathyroid hormone (PTH) administration shows an anabolic effect on bone. However, the mechanisms are not fully studied. Recent studies suggest that Wnt signaling is involved in PTH-induced bone formation. The current study was to examine if Wnt/β-catenin pathway is required during PTH-induced osteoblast differentiation. Osteoblastic MC3T3-E1 cells were treated with human PTH (1-34) (hPTH [1-34]) and expression levels of osteoblast differentiation markers were detected by real-time PCR. RNA levels of β-catenin, Runx2, Osteocalcin, Alkaline phosphatase, and Bone sialoprotein were significantly up-regulated after treatment with 10(-8) M of hPTH (1-34) for 6 h. Alkaline phosphatase activity and protein expression of β-catenin were also increased after 6 days of intermittent treatment with hPTH (1-34) in MC3T3-E1 cells. hPTH (1-34) significantly enhanced Topflash Luciferase activity after 6 h of treatment. More important, PTH-induced Alkaline phosphatase activity was significantly inhibited by knocking down β-catenin expression in cells using siRNA. Real-time RT-PCR results further showed down regulation of Runx2, Osteocalcin, Alkaline phosphatase, Bone sialoprotein gene expression in β-catenin siRNA transfected cells with/without PTH treatment. These results clearly indicate that PTH stimulates Wnt/β-catenin pathway in MC3T3-E1 cells and osteoblast differentiation markers expression was up-regulated by activation of Wnt/β-catenin signaling. Our study demonstrated that PTH-induced osteoblast differentiation mainly through activation of Wnt/β-catenin pathway in osteoblastic MC3T3-E1 cells.  相似文献   

20.
Synthetic peptides corresponding to the amino-terminal region of the human parathyroid hormone-related peptide (hPTHrp) were used to characterize the interaction of hPTHrp with parathyroid hormone (PTH) receptors in clonal rat osteosarcoma cells (ROS 17/2.8). Both hPTHrp-(1-34) and [Tyr40]hPTHrp-(1-40) showed full agonist activity in stimulating cyclic AMP accumulation in ROS cells; human PTHrp-(1-34) was approximately 2.5-fold as potent as hPTH-(1-34). Both [Tyr-40]hPTHrp-(3-40) and hPTH-(3-34) inhibited the cyclic AMP increase induced by either hPTHrp or PTH with parallel dose-inhibition curves. Binding to intact ROS cells of a 125I-labeled [Tyr40]hPTHrp-(1-40) (125I-[Tyr40]hPTHrp-(1-40)) which retains full biological activity was time- and temperature-dependent and reversible. Binding of 125I-[Tyr40]hPTHrp-(1-40) and 125I-labeled [Nle8, Nle18, Tyr34]bovine PTH-(1-34)NH2 to ROS cells was competed for, to the same extent and with the comparable potency, by either unlabeled hPTHrp or PTH peptides. The binding capacity and affinity of receptors in ROS cells were strikingly similar for hPTHrp and PTH. Affinity cross-linking with either radioligand resulted in high affinity, specific labeling of an apparently identical macromolecule centering at Mr = 80,000, which was detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in both reducing and nonreducing conditions. The data indicate that hPTHrp and PTH, their amino-terminal fragments at least, interact with the identical receptors with regard to affinity, capacity, specificity, and physicochemical characteristics in osteoblastic ROS 17/2.8 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号