首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The functions of molecular chaperones have been extensively investigated biochemically in vitro and genetically in bacteria and yeast. We have embarked on a functional genomic analysis of the Hsp90 chaperone machine in the mouse by disrupting the p23 gene using a gene trap approach. p23 is an Hsp90 cochaperone that is thought to stabilize Hsp90-substrate complexes and, independently, to act as the cytosolic prostaglandin E2 synthase. Gene deletions in budding and fission yeasts and knock-down experiments with the worm have not revealed any clear in vivo requirements for p23. We find that p23 is not essential for overall prenatal development and morphogenesis of the mouse, which parallels the observation that it is dispensable for proliferation in yeast. In contrast, p23 is absolutely necessary for perinatal survival. Apart from an incompletely formed skin barrier, the lungs of p23 null embryos display underdeveloped airspaces and substantially reduced expression of surfactant genes. Correlating with the known function of glucocorticoids in promoting lung maturation and the role of p23 in the assembly of a hormone-responsive glucocorticoid receptor-Hsp90 complex, p23 null fibroblast cells have a defective glucocorticoid response. Thus, p23 contributes a nonredundant, temporally restricted, and tissue-specific function during mouse development.  相似文献   

2.
Several signaling pathways that monitor the dynamic state of the cell converge on the tumor suppressor p53. The ability of p53 to process these signals and exert a dynamic downstream response in the form of cell cycle arrest and/or apoptosis is crucial for preventing tumor development. This p53 function is abrogated by p53 gene mutations leading to alteration of protein conformation. Hsp90 has been implicated in regulating both wild-type and mutant p53 conformations, and Hsp90 antagonists are effective for the therapy of some human tumors. Using cell lines that contain human tumor-derived temperature-sensitive p53 mutants we show that Hsp90 is required for both stabilization and reactivation of mutated p53 at the permissive temperature. A temperature decrease to 32 degrees C causes conversion to a protein conformation that is capable of inducing expression of MDM2, leading to reduction of reactivated p53 levels by negative feedback. Mutant reactivation is enhanced by simultaneous treatment with agents that stabilize the reactivated protein and is blocked by geldanamycin, a specific inhibitor of Hsp90 activity, indicating that Hsp90 antagonist therapy and therapies that act to reactivate mutant p53 will be incompatible. In contrast, Hsp90 is not required for maintaining wild-type p53 or for stabilizing wild-type p53 after treatment with chemotherapeutic agents, indicating that Hsp90 therapy might synergize with conventional therapies in patients with wild-type p53. Our data demonstrate the importance of the precise characterization of the interaction between p53 mutants and stress proteins, which may shed valuable information for fighting cancer via the p53 tumor suppressor pathway.  相似文献   

3.
A system consisting of five purified proteins: Hsp90, Hsp70, Hop, Hsp40, and p23, acts as a machinery for assembly of glucocorticoid receptor (GR).Hsp90 heterocomplexes. Hop binds independently to Hsp90 and to Hsp70 to form a Hsp90.Hop.Hsp70.Hsp40 complex that is sufficient to convert the GR to its steroid binding form, and this four-protein complex will form stable GR.Hsp90 heterocomplexes if p23 is added to the system (Dittmar, K. D., Banach, M., Galigniana, M. D., and Pratt, W. B. (1998) J. Biol. Chem. 273, 7358-7366). Hop has been considered essential for the formation of receptor.Hsp90 heterocomplexes and GR folding. Here we use Hsp90 and Hsp70 purified free of all traces of Hop and Hsp40 to show that Hop is not required for GR.Hsp90 heterocomplex assembly and activation of steroid binding activity. Rather, Hop enhances the rate of the process. We also show that Hsp40 is not essential for GR folding by the five-protein system but enhances a process that occurs less effectively when it is not present. By carrying out assembly in the presence of radiolabeled steroid to bind to the GR as soon as it is converted to the steroid binding state, we show that the folding change is brought about by only two essential components, Hsp90 and Hsp70, and that Hop, Hsp40, and p23 act as nonessential co-chaperones.  相似文献   

4.
5.
The structured DNA‐binding domain (DBD) of p53 is a well‐known client protein of the chaperone Hsp90. The p53 DBD contains a single zinc ion, coordinated by the side chains of Cys176, His179, Cys238, and Cys242; zinc coordination plays a structural role to stabilize the DBD and is required for its DNA binding. The ambiguous nature of the p53‐Hsp90 interaction, together with the stabilizing role of the zinc in the structure of the DBD, prompted us to examine the interaction of Hsp90 with zinc‐free p53 DBD. NMR spectroscopy and native gel electrophoresis did not show any apparent preference for the interaction of the destabilized zinc‐free form of p53 DBD with Hsp90. Intriguingly, however, at lower protein concentrations, closer to physiological concentrations, the addition of Hsp90, but not other chaperones such as Hsp70, Hsp40, p23, and HOP, appears to slow or prevent the aggregation of zinc‐free p53 DBD. This result suggests that part of the function of the Hsp90‐p53 interaction in the cell may be to stabilize the apoprotein in the absence of zinc.  相似文献   

6.
Ceramide has been implicated as an intermediate in the signal transduction of several cytokines including tumor necrosis factor (TNF). Both ceramide and TNF activate a wide variety of cellular responses, including NF-kappaB, AP-1, JNK, and apoptosis. Whether ceramide transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56(lck) in ceramide- and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, isogeneic Lck-deficient T cells. Treatment with ceramide activated NF-kappaB, degraded IkappaBalpha, and induced NF-kappaB-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56(lck) kinase. These effects were specific to ceramide, as activation of NF-kappaB by phorbol 12-myristate 13-acetate, lipopolysaccharide, H(2)O(2), and TNF was minimally affected. p56(lck) was also found to be required for ceramide-induced but not TNF-induced AP-1 activation. Similarly, ceramide activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. Ceramide also induced cytotoxicity and activated caspases and reactive oxygen intermediates in Jurkat cells but not in JCaM1 cells. Ceramide activated p56(lck) activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56(lck) tyrosine kinase reversed the ceramide-induced NF-kappaB activation and cytotoxicity. Overall our results demonstrate that p56(lck) plays a critical role in the activation of NF-kappaB, AP-1, JNK, and apoptosis by ceramide but has minimal or no role in activation of these responses by TNF.  相似文献   

7.
Inhibition of p56(lck) tyrosine kinase by isothiazolones   总被引:1,自引:0,他引:1  
Lck encodes a 56-kDa protein-tyrosine kinase, predominantly expressed in T lymphocytes, crucial for initiating T cell antigen receptor (TCR) signal transduction pathways, culminating in T cell cytokine gene expression and effector functions. As a consequence of a high-throughput screen for selective, novel inhibitors of p56(lck), an isothiazolone compound was identified, methyl-3-(N-isothiazolone)-2-thiophenecarboxylate(A-125800), which inhibits p56(lck) kinase activity with IC50 = 1-7 microM. Under similar assay conditions, the isothiazolone compound was equipotent in blocking the ZAP-70 tyrosine kinase activity but was 50 to 100 times less potent against the catalytic activities of p38 MAP kinase and c-Jun N-terminal kinase 2alpha. A-125800 blocked activation-dependent TCR tyrosine phosphorylation and intracellular calcium mobilization in Jurkat T cells (IC50 = 35 microM) and blocked T cell proliferation in response to alloantigen (IC50 = 14 microM) and CD3/CD28-induced IL-2 secretion (IC50 = 2.2 microM) in primary T cell cultures. Inhibition of p56(lck )by A-125800 was dose- and time-dependent and was irreversible. A substitution of methylene for the sulfur atom in the isothiazolone ring of the compound completely abrogated the ability to inhibit p56(lck) kinase activity and TCR-dependent signal transduction. Incubation with thiols such as beta-ME or DTT also blocked the ability of the isothiazolone to inhibit p56(lck) kinase activity. LC/MS analysis established the covalent modification of p56(lck) at cysteine residues 378, 465, and 476. Together these data support an inhibitory mechanism, whereby cysteine -SH groups within the p56(lck) catalytic domain react with the isothiazolone ring, leading to ring opening and disulfide bond formation with the p56(lck) enzyme. Loss of p56(lck) activity due to -SH oxidation has been suggested to play a role in the pathology of AIDS. Consequently, a similar mechanism of sulfhydryl oxidation leading to p56(lck) inhibition, described in this report, may occur in the intact T cell and may underlie certain T cell pathologies.  相似文献   

8.
p23 is a component of the Hsp90 molecular chaperone machine. It binds and stabilizes the ATP-bound dimeric form of Hsp90. Since Hsp90 binds protein substrates in the ATP conformation, p23 has been proposed to stabilize Hsp90-substrate complexes. In addition, p23 can also function as a molecular chaperone by itself and even possesses an unrelated enzymatic activity. Whether it fulfills the latter functions in cells while bound to Hsp90 remains unknown and is difficult to extrapolate from cell-free biochemical experiments. Using the "fluorescence recovery after photobleaching" (FRAP) technology, I have examined the dynamics of human p23, expressed as a fusion protein with the green fluorescent protein (GFP), in living human HeLa cells. GFP-p23 is distributed throughout the cell, and its mobility is identical in the cytoplasm and in the nucleus. When the Hsp90 interaction is disrupted either with the Hsp90 inhibitor geldanamycin or by introduction of point mutations into p23, the mobility of p23 is greatly accelerated. Under these conditions, its intracellular movement may be diffusion-controlled. In contrast, when wild-type p23 is able to bind Hsp90, a more complex FRAP behavior is observed, suggesting that it is quantitatively bound in Hsp90 complexes undergoing a multitude of other interactions.  相似文献   

9.
Unmethylated CpG oligodeoxynucleotides (CpG ODNs) activate immune responses in a TLR9-dependent manner. In this study, we found that stimulation of mouse macrophages and dendritic cells with B-type CpG ODN (CpG-B ODN) increased the cellular level of heat shock protein (Hsp) 90beta but not Hsp90alpha and prevented apoptosis induced by serum starvation or staurosporine treatment. The CpG-B ODN-induced Hsp90beta expression depended on TLR9, MyD88, and PI3K. Inhibition of Hsp90beta level by expressing small-interfering RNA suppressed not only Hsp90beta expression but also PI3K-dependent phosphorylation of Akt and CpG-B ODN-mediated antiapoptosis. Additional studies demonstrated that as described by other group in mast cells, Hsp90beta but not Hsp90alpha was associated with Bcl-2. Inhibition of Hsp90beta suppressed the CpG-B ODN-induced association of Hsp90beta with Bcl-2 and impaired the inhibitory effect of CpG-B ODN in the release of cytochrome c and activation of caspase-3. This study thus reveals the involvement of Hsp90beta but not Hsp90alpha in CpG-B ODN-mediated antiapoptotic response and that Hsp90beta is distinct from Hsp90alpha in regulation of the cellular function of immune cells.  相似文献   

10.
A series of structurally novel benzothiazole based small molecule inhibitors of p56(lck) were prepared to elucidate their structure-activity relationships (SARs), selectivity and cell activity in the T-cell proliferation assay. BMS-243117 (compound 2) is identified as a potent, and selective Lck inhibitor with good cellular activity (IC(50)=1.1 microM) against T-cell proliferation.  相似文献   

11.
Rac1 is a small GTPase that regulates the actin cytoskeleton but also other cellular processes. To investigate the function of Rac1 in skin, we generated mice with a keratinocyte-restricted deletion of the rac1 gene. Rac1-deficient mice lost nearly all of their hair within a few weeks after birth. The nonpermanent part of mutant hair follicles developed constrictions; lost expression of hair follicle-specific keratins, E-cadherin, and alpha6 integrin; and was eventually removed by macrophages. The permanent part of hair follicles and the sebaceous glands were maintained, but no regrowth of full-length hair follicles was observed. In the skin of mutant mice, epidermal keratinocytes showed normal differentiation, proliferation, cell-cell contacts, and basement membrane deposition, demonstrating no obvious defects of Rac1-deficient epidermis in vivo. In vitro, Rac1-null keratinocytes displayed a strong spreading defect and slightly impaired adhesion. These data show that Rac1 plays an important role in sustaining the integrity of the lower part of hair follicles but not in maintenance of the epidermis.  相似文献   

12.
p56lck and p60c-src are closely related protein-tyrosine kinases that are activated by similar oncogenic mutations. We have used fibroblast cell lines that express p56lck from introduced DNA molecules to compare the subcellular localizations of p60c-src and p56lck and their abilities to bind polyomavirus middle T antigen (mT). p56lck is associated with the detergent-insoluble matrix, as defined by extraction with solutions containing nonionic detergents, whereas p60c-src is soluble under these conditions. p56lck is also associated with detergent-insoluble structures in a lymphoid cell line, LSTRA. p60c-src binds to mT, but p56lck does not bind detectably. In terms of both solubility and mT interactions, the nononcogenic p56lck more closely resembles oncogenically activated p60c-src mutants than it resembles p60c-src. Because published results show that an intact carboxy terminus is required for p60c-src to bind mT and be soluble, we tested whether the different localization and mT binding properties of p56lck and p60c-src were dictated by their different carboxy termini. A protein consisting largely of p60c-src sequences but carrying a p56lck carboxy terminus was soluble and bound to mT. We suggest that both the solubility and mT-binding properties of p60c-src not only require sequences common to the carboxy termini of p60c-src and p56lck, but also require sequences unique to the body of p60c-src.  相似文献   

13.
CD4 serves as a receptor for major histocompatibility complex class II antigens and as a receptor for the human immunodeficiency virus type 1 (HIV-1) viral coat protein gp120. It is coupled to the protein-tyrosine kinase p56lck, an interaction necessary for an optimal response of certain T cells to antigen. In addition to the protein-tyrosine kinase domain, p56lck possesses Src homology 2 and 3 (SH2 and SH3) domains as well as a unique N-terminal region. The mechanism by which p56lck generates intracellular signals is unclear, although it has the potential to interact with various downstream molecules. One such downstream target is the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase), which has been found to bind to activated pp60src and receptor-tyrosine kinases. In this study, we verified that PI 3-kinase associates with the CD4:p56lck complex as judged by the presence of PI 3-phosphate generated from anti-CD4 immunoprecipitates and detected by high-pressure liquid chromatographic analysis. However, surprisingly, CD4-p56lck was also found to associate with another lipid kinase, phosphatidylinositol 4-kinase (PI 4-kinase). The level of associated PI 4-kinase was generally higher than PI 3-kinase activity. HIV-1 gp120 and antibody-mediated cross-linking induced a 5- to 10-fold increase in the level of CD4-associated PI 4- and PI 3-kinases. The use of glutathione S-transferase fusion proteins carrying Lck-SH2, Lck-SH3, and Lck-SH2/SH3 domains showed PI 3-kinase binding to the SH3 domain of p56lck, an interaction facilitated by the presence of an adjacent SH2 domain. PI 4-kinase bound to neither the SH2 nor the SH3 domain of p56lck. CD4-p56lck contributes PI 3- and PI 4-kinase to the activation process of T cells and may play a role in HIV-1-induced immune defects.  相似文献   

14.
We previously showed that the association of CD4 and G(M3) ganglioside induced by CD4 ligand binding was required for the down-regulation of adhesion and that aggregation of ganglioside-enriched domains was accompanied by transient co-localization of LFA-1 (lymphocyte function-associated antigen-1), PI3K (phosphoinositide 3-kinase) and CD4. We also showed that these proteins co-localized with the G(M1) ganglioside that partially co-localized with G(M3) in these domains. In the present study, we show that CD4-p56(lck) association in CD4 signalling is required for the redistribution of p56(lck), PI3K and LFA-1 in ganglioside-enriched domains, since ganglioside aggregation and recruitment of these proteins were not observed in a T-cell line (A201) expressing the mutant form of CD4 that does not bind p56(lck). In addition, we show that although these proteins associated in different ways with G(M1) and G(M3), all of the associations were dependent on CD4-p56(lck) association. Gangliosides could associate with these proteins that differ in affinity binding and could be modified following CD4 signalling. Our results suggest that through these associations, gangliosides transiently sequestrate these proteins and consequently inhibit LFA-1-dependent adhesion. Furthermore, while structural diversity of gangliosides may allow association with distinct proteins, we show that the tyrosine phosphatase SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2), also required for the down-regulation of LFA-1-dependent adhesion, transiently and partially co-localized with PI3K and p56(lck) in detergent-insoluble membranes without association with G(M1) or G(M3). We propose that CD4 ligation and binding with p56(lck) and their interaction with G(M3) and/or G(M1) gangliosides induce recruitment of distinct proteins important for CD4 signalling to form a multimolecular signalling complex.  相似文献   

15.
The p56lck and p59fyn protein tyrosine kinases are important signal transmission elements in the activation of mature T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex. The lack of either kinase results in deficient early signaling events, and pharmacological agents that block tyrosine phosphorylation prevent T-cell activation altogether. After triggering of the TCR/CD3 complex, both kinases are moderately activated and begin to phosphorylate cellular substrates, but the molecular mechanisms responsible for these changes have remained unclear. We recently found that the p72syk protein tyrosine kinase is physically associated with the TCR/CD3 complex and is rapidly tyrosine phosphorylated and activated by receptor triggering also in T cells lacking p56lck. Here we examine the regulation of p72syk and its interaction with p56lck in transfected COS-1 cells. p72syk was catalytically active and heavily phosphorylated on its putative autophosphorylation site, Tyr-518/519. Mutation of these residues to phenylalanines abolished its activity in vitro and toward cellular substrates in vivo and reduced its tyrosine phosphorylation in intact cells by approximately 90%. Coexpression of lck did not alter the catalytic activity of p72syk, but the expressed p56lck was much more active in the presence of p72syk than when expressed alone. This activation was also seen as increased phosphorylation of cellular proteins. Concomitantly, p56lck was phosphorylated at Tyr-192 in its SH2 domain, and a Phe-192 mutant p56lck was no longer phosphorylated by p72syk. Phosphate was also detected in p56lck at Tyr-192 in lymphoid cells. These findings suggest that p56lck is positively regulated by the p72syk kinase.  相似文献   

16.
We here identify Mai1p, a homologue of the autophagy protein Aut10p, as a novel component essential for proaminopeptidase I (proAPI) maturation under non-starvation conditions. In mai1Delta cells mature vacuolar proteinases are detectable and vacuolar acidification is normal. In mai1Delta cells autophagy occurs, though at a somewhat reduced level. This is indicated by proAPI maturation during starvation and accumulation of autophagic bodies during starvation with phenylmethylsulfonyl fluoride. Homozygous diploid mai1Delta cells sporulate, but with a slightly reduced frequency. Biologically active Ha-tagged Mai1p, chromosomally expressed under its native promoter, is at least in part peripherally membrane-associated. In indirect immunofluorescence it localizes to the vacuolar membrane or structures nearby. In some cells Ha-tagged Mai1p appears concentrated at regions adjacent to the nucleus.  相似文献   

17.
Mutations in the unc-87 gene of Caenorhabditis elegans cause disorganization of the myofilament lattice in adult bodywall muscle. In order to assess the organization of specific bodywall muscle components in the absence of the unc-87 gene product, we examined the bodywall muscles of mutant animals using phalloidin and monoclonal antibodies to various muscle proteins. These studies indicated that the bodywall muscle of unc-87 embryos is initially almost wild type in its organization, but at later stages, the muscle becomes severely disorganized. To address the possibility that this disorganization is due to deterioration of the muscle as a result of contraction, we introduced into the unc-87 mutant background a mutation that decreases myosin heavy chain activity but does not substantially affect muscle structure. The improved muscle structure and motility of the double mutants are consistent with the hypothesis that at least part of the disorganization phenotype of unc-87 mutants is a consequence of the wild-type levels of force generated during muscle contraction. These results imply that the role of the unc-87 gene product is not in specifying organization but rather in serving as a structural component maintaining lattice integrity during and after contraction.  相似文献   

18.
19.
Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.  相似文献   

20.
Starting from the tetrapeptide Ac-pYEEI-NHMe and using a structure-based approach, we have designed and synthesised a peptidomimetic ligand for p56(lck) SH2 domain containing a conformationally restricted replacement for the two glutamate residues. We have explored replacments for the isoleucine residue in the pY+3 pocket and thus identified 1-(R)-amino-3-(S)-indaneacetic acid as the most potent replacement. We also report the X-ray crystal structures of two of the antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号