首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass spectrometry has become the method of choice to detect and quantify the minute amounts of proteins at the genomic scale. It has recently been adopted for three dimensional structure analyses of proteins or protein complexes by chemically cross-linking their intact forms and analyzing the cross-linked pieces after digestion. This highlight provides an overview of the technology with a focus on advances in the last two years. This cross-linking mass spectrometry has a great potential to become a powerful tool to supplement current X-ray and NMR method of protein structure analysis.  相似文献   

2.
The gastrointestinal tract of mammals is inhabited by several hundred bacterial species. While the effects of the gut microbiota upon the host have been widely studied, the microbial response to host factors has only recently attracted attention. In order to investigate the influence of the host on the physiology of gastrointestinal bacteria, a simplified model of host–bacteria interaction was created by associating germfree mice with commensal Escherichia coli . Here we demonstrate the feasibility of analysing the bacterial response to the conditions in the digestive system by a proteomics-based approach. Two-dimensional gel electrophoresis (2D-GE) followed by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was used to identify bacterial proteins from caecal and faecal samples. In a set of 60 arbitrarily chosen spots of stably and differentially expressed proteins, 50 different bacterial proteins were identified. Their ascribed functions suggest that the host-associated bacteria adapt their metabolism to the conditions in the intestine by utilizing arginine, asparagine and aspartate as well as glucose/galactose, ribose, maltose, glucuronate, galacturonate and gluconate as substrates. Thirteen proteins not previously detected on 2D-gels and 10 proteins with unknown or poorly characterized physiological function were identified, while the existence of three proteins had so far only been inferred from predictions or by homology.  相似文献   

3.
In recent years, advances in mass spectrometry have provided unprecedented knowledge of protein expression within cells. It has become apparent that many proteins function as macromolecular complexes. Structural genomics programs are determining the fold of these proteins at an increasing rate and electron microscopic tomography potentially provides a means to determine the location of these complexes within the cell. A complete understanding of the molecular mechanism of these proteins requires detailed information on the interactions and dynamics within the complex. Recent advances in mass spectrometry now make it possible to use hydrogen/deuterium exchange to detect intersubunit interfaces and dynamics within supramolecular complexes.  相似文献   

4.
Timely classification and identification of bacteria is of vital importance in many areas of public health. Mass spectrometry-based methods provide an attractive alternative to well-established microbiologic procedures. Mass spectrometry methods can be characterized by the relatively high speed of acquiring taxonomically relevant information. Gel-free mass spectrometry proteomics techniques allow for rapid fingerprinting of bacterial proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or, for high-throughput sequencing of peptides from protease-digested cellular proteins, using mass analysis of fragments from collision-induced dissociation of peptide ions. The latter technique uses database searching of product ion mass spectra. A database contains a comprehensive list of protein sequences translated from protein-encoding open reading frames found in bacterial genomes. The results of such searches allow the assignment of experimental peptide sequences to matching theoretical bacterial proteomes. Phylogenetic profiles of sequenced peptides are then used to create a matrix of sequence-to-bacterium assignments, which are analyzed using numerical taxonomy tools. The results thereof reveal the relatedness between bacteria, and allow the taxonomic position of an investigated strain to be inferred.  相似文献   

5.
Timely classification and identification of bacteria is of vital importance in many areas of public health. Mass spectrometry-based methods provide an attractive alternative to well-established microbiologic procedures. Mass spectrometry methods can be characterized by the relatively high speed of acquiring taxonomically relevant information. Gel-free mass spectrometry proteomics techniques allow for rapid fingerprinting of bacterial proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or, for high-throughput sequencing of peptides from protease-digested cellular proteins, using mass analysis of fragments from collision-induced dissociation of peptide ions. The latter technique uses database searching of product ion mass spectra. A database contains a comprehensive list of protein sequences translated from protein-encoding open reading frames found in bacterial genomes. The results of such searches allow the assignment of experimental peptide sequences to matching theoretical bacterial proteomes. Phylogenetic profiles of sequenced peptides are then used to create a matrix of sequence-to-bacterium assignments, which are analyzed using numerical taxonomy tools. The results thereof reveal the relatedness between bacteria, and allow the taxonomic position of an investigated strain to be inferred.  相似文献   

6.
In recent years, mass spectrometry has become the method of choice for identifying small amounts of gel separated proteins. Using high mass accuracy peptide mass mapping followed if necessary by nanoelectrospray sequencing, most mammalian proteins can now be identified quickly and sensitively either in amino acid or in EST sequence databases. These methods are illustrated here using an ongoing project in the author's laboratory, a mass spectrometric screen for new mouse brain receptors and their interaction partners.  相似文献   

7.
Display of proteins on bacteria   总被引:20,自引:0,他引:20  
Display of heterologous proteins on the surface of microorganisms, enabled by means of recombinant DNA technology, has become an increasingly used strategy in various applications in microbiology, biotechnology and vaccinology. Gram-negative, Gram-positive bacteria, viruses and phages are all being investigated in such applications. This review will focus on the bacterial display systems and applications. Live bacterial vaccine delivery vehicles are being developed through the surface display of foreign antigens on the bacterial surfaces. In this field, 'second generation' vaccine delivery vehicles are at present being generated by the addition of mucosal targeting signals, through co-display of adhesins, in order to achieve targeting of the live bacteria to immunoreactive sites to thereby increase immune responses. Engineered bacteria are further being evaluated as novel microbial biocatalysts with heterologous enzymes immobilized as surface exposed on the bacterial cell surface. A discussion has started whether bacteria can find use as new types of whole-cell diagnostic devices since single-chain antibodies and other type of tailor-made binding proteins can be displayed on bacteria. Bacteria with increased binding capacity for certain metal ions can be created and potential environmental or biosensor applications for such recombinant bacteria as biosorbents are being discussed. Certain bacteria have also been employed for display of various poly-peptide libraries for use as devices in in vitro selection applications. Through various selection principles, individual clones with desired properties can be selected from such libraries. This article explains the basic principles of the different bacterial display systems, and discusses current uses and possible future trends of these emerging technologies.  相似文献   

8.
We report the use of a surface analysis approach, static secondary ion mass spectrometry (SIMS) equipped with a molecular (ReO(4)(-)) ion primary beam, to analyze the surface of intact microbial cells. SIMS spectra of 28 microorganisms were compared to fatty acid profiles determined by gas chromatographic analysis of transesterfied fatty acids extracted from the same organisms. The results indicate that surface bombardment using the molecular primary beam cleaved the ester linkage characteristic of bacteria at the glycerophosphate backbone of the phospholipid components of the cell membrane. This cleavage enables direct detection of the fatty acid conjugate base of intact microorganisms by static SIMS. The limit of detection for this approach is approximately 10(7) bacterial cells/cm(2). Multivariate statistical methods were applied in a graded approach to the SIMS microbial data. The results showed that the full data set could initially be statistically grouped based upon major differences in biochemical composition of the cell wall. The gram-positive bacteria were further statistically analyzed, followed by final analysis of a specific bacterial genus that was successfully grouped by species. Additionally, the use of SIMS to detect microbes on mineral surfaces is demonstrated by an analysis of Shewanella oneidensis on crushed hematite. The results of this study provide evidence for the potential of static SIMS to rapidly detect bacterial species based on ion fragments originating from cell membrane lipids directly from sample surfaces.  相似文献   

9.
Abstract

In recent years, mass spectrometry has become the method of choice for identifying small amounts of gel separated proteins. Using high mass accuracy peptide mass mapping followed if necessary by nanoelectrospray sequencing, most mammalian proteins can now be identified quickly and sensitively either in amino acid or in EST sequence databases. These methods are illustrated here using an ongoing project in the author's laboratory, a mass spectrometric screen for new mouse brain receptors and their interaction partners.  相似文献   

10.
An integrated procedure is presented whereby gas chromatography-ion trap mass spectrometry is used to determine chemical markers of gram-negative bacterial lipopolysaccharide (3-hydroxy fatty acids with 10 to 18 carbon atoms), gram-positive bacteria (branched-chain fatty acids with 15 and 17 carbon atoms), bacterial peptidoglycan (muramic acid), and fungal biomass (ergosterol) in samples of settled house dust. A hydrolysate of (13)C-labeled cyanobacterial cells is used as an internal standard for the first three markers. These analyses require two dust samples, one for 3-OH fatty acids, branched-chain fatty acids, and muramic acid and another for ergosterol. The method may be used to characterize microbial communities in environmental samples.  相似文献   

11.
A "one-pot" alternative method for processing proteins and isolating peptide mixtures from bacterial samples is presented for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and data reduction. The conventional in-solution digestion of the protein contents of bacteria is compared to a small disposable filter unit placed inside a centrifuge vial for processing and digestion of bacterial proteins. Each processing stage allows filtration of excess reactants and unwanted byproduct while retaining the proteins. Upon addition of trypsin, the peptide mixture solution is passed through the filter while retaining the trypsin enzyme. The peptide mixture is then analyzed by LC-MS/MS with an in-house BACid algorithm for a comparison of the experimental unique peptides to a constructed proteome database of bacterial genus, specie, and strain entries. The concentration of bacteria was varied from 10 × 10(7) to 3.3 × 10(3) cfu/mL for analysis of the effect of concentration on the ability of the sample processing, LC-MS/MS, and data analysis methods to identify bacteria. The protein processing method and dilution procedure result in reliable identification of pure suspensions and mixtures at high and low bacterial concentrations.  相似文献   

12.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) using ribosomal subunit proteins coded in the S10-spc-alpha operon as biomarkers was applied for the classification of the Sphingomonadaceae from the environment. To construct a ribosomal protein database, S10-spc-alpha operon of type strains of the Sphingomonadaceae and their related alkylphenol polyethoxylate (APEO(n) )-degrading bacteria were sequenced using specific primers designed based on nucleotide sequences of genome-sequenced strains. The observed MALDI mass spectra of intact cells were compared with the theoretical mass of the constructed ribosomal protein database. The nine selected biomarkers coded in the S10-spc-alpha operon, L18, L22, L24, L29, L30, S08, S14, S17, and S19, could successfully distinguish the Sphingopyxis terrae NBRC 15098(T) and APEO(n) -degrading bacteria strain BSN20, despite only one base difference in the 16S rRNA gene sequence. This method, named the S10-GERMS (S10-spc-alpha operon gene-encoded ribosomal protein mass spectrum) method, is a significantly useful tool for bacterial discrimination of the Sphingomonadaceae at the strain level and can detect and monitor the main APEO(n) -degrading bacteria in the environment.  相似文献   

13.
目前控制细菌和病毒感染性疾病的方法很多,但由于微生物菌株种类越来越多,且耐药微生物菌株不断涌现,已有的治疗手段无法取得良好疗效,因此探索新的抗微生物治疗方法迫在眉睫。光动力抗菌化学疗法是基于光动力疗法的原理,利用光敏剂在异常组织选择性聚集,在分子氧的参与下,由特定波长的光激发产生活性氧,引发一系列的光化学反应,对微生物进行选择性杀伤的一种新方法。光动力抗菌化学疗法对细菌、真菌和病毒引起的感染,特别是耐药菌感染均显示很好的疗效。本文将对光动力抗菌化学疗法中常使用的光敏剂进行分类,并对其研究进展进行综述。  相似文献   

14.
An integrated procedure is presented whereby gas chromatography-ion trap mass spectrometry is used to determine chemical markers of gram-negative bacterial lipopolysaccharide (3-hydroxy fatty acids with 10 to 18 carbon atoms), gram-positive bacteria (branched-chain fatty acids with 15 and 17 carbon atoms), bacterial peptidoglycan (muramic acid), and fungal biomass (ergosterol) in samples of settled house dust. A hydrolysate of 13C-labeled cyanobacterial cells is used as an internal standard for the first three markers. These analyses require two dust samples, one for 3-OH fatty acids, branched-chain fatty acids, and muramic acid and another for ergosterol. The method may be used to characterize microbial communities in environmental samples.  相似文献   

15.
The combined use of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry has become a powerful and widely used tool in proteome studies. Following separation by electrophoresis, proteins can be transferred to an inert support such as polyvinylidene fluoride (PVDF) or nitrocellulose (NC) for the visualization of individual or specific classes of proteins by immunochemical detection methods. We developed a method that allows the mass spectrometric analysis of peptides derived from proteins detected by Western blotting on PVDF. Proteolysis buffer containing either dimethyl formamide (DMF) or Triton X-100 to recover peptides amenable to mass spectrometry was investigated. Although either one can be used, the buffer containing DMF required less sample handling prior to mass spectrometry. The approach was tested using commercially available proteins and serine-phosphorylated proteins from an HEK-293 nuclear extract.  相似文献   

16.
Proteins with up to 100 amino acids have been largely overlooked due to the challenges associated with predicting and identifying them using traditional methods. Recent advances in bioinformatics and machine learning, DNA sequencing, RNA and Ribo-seq technologies, and mass spectrometry (MS) have greatly facilitated the detection and characterisation of these elusive proteins in recent years. This has revealed their crucial role in various cellular processes including regulation, signalling and transport, as toxins and as folding helpers for protein complexes. Consequently, the systematic identification and characterisation of these proteins in bacteria have emerged as a prominent field of interest within the microbial research community. This review provides an overview of different strategies for predicting and identifying these proteins on a large scale, leveraging the power of these advanced technologies. Furthermore, the review offers insights into the future developments that may be expected in this field.  相似文献   

17.
Quantitative high-throughput mass spectrometry has become an established tool to measure relative gene expression proteome-wide. The output of such an experiment usually consists of a list of expression ratios (fold changes) for several thousand proteins between two conditions. However, we observed that individual peptide fold changes may show a significantly different behavior than other peptides from the same protein and that these differences cannot be explained by imprecise measurements. Such outlier peptides can be the consequence of several technical (misidentifications, misquantifications) or biological (post-translational modifications, differential regulation of isoforms) reasons. We developed a method to detect outlier peptides in mass spectrometry data which is able to delineate imprecise measurements from real outlier peptides with high accuracy when the true difference is as small as 1.4 fold. We applied our method to experimental data and investigated the different technical and biological effects that result in outlier peptides. Our method will assist future research to reduce technical bias and can help to identify genes with differentially regulated protein isoforms in high throughput mass spectrometry data.  相似文献   

18.
The first clearly established example of Ser/Thr/Tyr phosphorylation of a bacterial protein was isocitrate dehydrogenase. In 1979, 25 years after the discovery of protein phosphorylation in eukaryotes, this enzyme was reported to become phosphorylated on a serine residue. In subsequent years, numerous other bacterial proteins phosphorylated on Ser, Thr or Tyr were discovered and the corresponding protein kinases and P-protein phosphatases were identified. These protein modifications regulate all kinds of physiological processes. Ser/Thr/Tyr phosphorylation in bacteria therefore seems to play a similar important role as in eukaryotes. Surprisingly, many bacterial protein kinases do not exhibit any similarity to eukaryotic protein kinases, but rather resemble nucleotide-binding proteins or kinases phosphorylating diverse low-molecular-weight substrates.  相似文献   

19.
Different sugars provided to bacteria as single sources of carbon and energy require the induction of different metabolic enzymes, transporters, and uptake systems in order to support growth and cell survival. Using a nano–high-performance liquid chromatography/mass spectrometry (nano-HPLC/MS) system we constructed comprehensive peptide maps for Escherichia coli grown with either lactose or glucose in minimal medium. Digested bacterial samples were separated in a two-dimensional manner by combining strong cation exchange (SCX) and reversed-phased (RP) chromatography. Peptides were eluted online to an iontrap MS instrument and further analyzed by tandem MS fragmentation. Bacterial proteins originating from the differing samples were analyzed by searching the Swiss Prot Database. Data are presented that show the ability to detect several hundred different proteins significantly expressed under both conditions. Several enzymes and binding proteins related to the lactose metabolism were only identified in the sample grown with this carbon source.  相似文献   

20.
BackgroundOxaliplatin (OXA) is a chemotherapy agent commonly used in the treatment of colorectal cancer (CRC). Sodium butyrate (NaB) has an antitumor effect.MethodsIn total, 30 patients in stage III who completed 8 cycles of chemotherapy regimens were recruited for this study. The patients were divided into good and bad groups based on the chemotherapy efficacy. Gas chromatography–mass spectrometry (GC/MS) was used to detect microbial metabolites in stool samples from CRC patients. Cell counting kit-8 (CCK-8), Annexin-V APC/7-AAD double staining, Transwell assays, scratch-wound assays, and EdU assays were used to detect cell proliferation, apoptosis, invasion and migration, respectively. Fluoroelectron microscopy was used to observe the cell structures. To verify the inhibitory effect of NaB and OXA at animal level, a subcutaneous transplanted tumor model was established. Finally, 16S sequencing technology was used to detect intestinal bacteria. GC–MS was used to detect metabolites in mouse stools.ResultsNaB was a differential metabolite that affected the efficacy of OXA. NAB and oxaliplatin can synergically inhibit cell proliferation, migration and invasion, and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of oxaliplatin and sodium butyrate on tumor in mice. In addition, the intestinal microbe detection and microbial metabolite detection in fecal samples from mice showed significant differences between butyrate-producing bacteria and NaB.ConclusionNaB and OXA can synergistically inhibit the proliferation, invasion and metastasis of CRC cells and promote the apoptosis of CRC cells. NaB, as an OXA synergist, has the potential to become a new clinical adjuvant in CRC chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号