首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
When a bacterial genome is compared to the metagenome of an environment it inhabits, most genes recruit at high sequence identity. In free-living bacteria (for instance marine bacteria compared against the ocean metagenome) certain genomic regions are totally absent in recruitment plots, representing therefore genes unique to individual bacterial isolates. We show that these Metagenomic Islands (MIs) are also visible in bacteria living in human hosts when their genomes are compared to sequences from the human microbiome, despite the compartmentalized structure of human-related environments such as the gut. From an applied point of view, MIs of human pathogens (e.g. those identified in enterohaemorragic Escherichia coli against the gut metagenome or in pathogenic Neisseria meningitidis against the oral metagenome) include virulence genes that appear to be absent in related strains or species present in the microbiome of healthy individuals. We propose that this strategy (i.e. recruitment analysis of pathogenic bacteria against the metagenome of healthy subjects) can be used to detect pathogenicity regions in species where the genes involved in virulence are poorly characterized. Using this approach, we detect well-known pathogenicity islands and identify new potential virulence genes in several human pathogens.  相似文献   

2.
The microbiome plays essential roles in health and disease. Our understanding of the imbalances that can arise in the microbiome and their consequences is held back by a lack of technologies that selectively knock out members of these microbial communities. Antibiotics and fecal transplants, the existing methods for manipulating the microbiota of the gastrointestinal tract, are not sufficiently pinpointed to reveal how particular microbial genes, strains, or species affect human health. A toolset for the precise manipulation of the microbiome could significantly advance disease diagnosis and treatment. Here, we provide an overview of current and future strategies for the development of molecular tools that can be used to probe the microbiome without producing off-target effects.  相似文献   

3.
Zhang T  Zhang XX  Ye L 《PloS one》2011,6(10):e26041
The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In this study, the transposon aided capture (TRACA) system was employed to isolate novel plasmids from activated sludge of one STP in Hong Kong, China. We also used Illumina Hiseq 2000 high-throughput sequencing and metagenomics analysis to investigate the plasmid metagenome. Two novel plasmids were acquired from the sludge microbiome by using TRACA system and one novel plasmid was identified through metagenomics analysis. Our results revealed high levels of various ARGs as well as MGEs for HGT, including integrons, transposons and plasmids. The application of the TRACA system to isolate novel plasmids from the environmental metagenome, coupled with subsequent high-throughput sequencing and metagenomic analysis, highlighted the prevalence of ARGs and MGEs in microbial community of STPs.  相似文献   

4.
Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed.  相似文献   

5.
6.
Many microbes are important symbiotes of human. They form specific microbiota communities, participate in various kinds of biological processes of their host and thus deeply affect human health status. Metagenomic sequencing has been widely used in human microbiota study due to its capacity of studying all genetic materials in an environment as a whole without any extra need of isolation or cultivation of microorganisms. Many efforts have been made by researchers in this area trying to dig out interesting knowledge from various metagenome data. In this review, we go through some prominent studies in the metagenomic area. We summarize them into three categories, constructing taxonomy and gene reference, characterization of microbiome distribution patterns, and detection of microbiome alternations associated with specific human phenotypes or diseases. Some available data resources are also provided. This review can serve as an entrance to this exciting and rapidly developing field for researchers interested in human microbiomes.  相似文献   

7.
The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host. An analysis of 78,619 pyrosequencing reads generated from pygmy loris fecal DNA extracts was performed to help better understand the microbial diversity and functional capacity of the pygmy loris gut microbiome. The taxonomic analysis of the metagenomic reads indicated that pygmy loris fecal microbiomes were dominated by Bacteroidetes and Proteobacteria phyla. The hierarchical clustering of several gastrointestinal metagenomes demonstrated the similarities of the microbial community structures of pygmy loris and mouse gut systems despite their differences in functional capacity. The comparative analysis of function classification revealed that the metagenome of the pygmy loris was characterized by an overrepresentation of those sequences involved in aromatic compound metabolism compared with humans and other animals. The key enzymes related to the benzoate degradation pathway were identified based on the Kyoto Encyclopedia of Genes and Genomes pathway assignment. These results would contribute to the limited body of primate metagenome studies and provide a framework for comparative metagenomic analysis between human and non-human primates, as well as a comparative understanding of the evolution of humans and their microbiome. However, future studies on the metagenome sequencing of pygmy loris and other prosimians regarding the effects of age, genetics, and environment on the composition and activity of the metagenomes are required.  相似文献   

8.
Human gut microbiome is a diversified, resilient, immuno-stabilized, metabolically active and physiologically essential component of the human body. Scientific explorations have been made to seek in-depth information about human gut microbiome establishment, microbiome functioning, microbiome succession, factors influencing microbial community dynamics and the role of gut microbiome in health and diseases. Extensive investigations have proposed the microbiome therapeutics as a futuristic medicine for various physiological and metabolic disorders. A comprehensive outlook of microbial colonization, host–microbe interactions, microbial adaptation, commensal selection and immuno-survivability is still required to catalogue the essential genetic and physiological features for the commensal engagement. Evolution of a structured human gut microbiome relies on the microbial flexibility towards genetic, immunological and physiological adaptation in the human gut. Key features for commensalism could be utilized in developing tailor-made microbiome-based therapy to overcome various physiological and metabolic disorders. This review describes the key genetics and physiological traits required for host–microbe interaction and successful commensalism to institute a human gut microbiome.  相似文献   

9.
10.
Living ‘things’ coexist with microorganisms, known as the microbiota/microbiome that provides essential physiological functions to its host. Despite this reliance, the microbiome is malleable and can be altered by several factors including birth-mode, age, antibiotics, nutrition, and disease. In this minireview, we consider how other microbiomes and microbial communities impact the host microbiome and the host through the concept of microbiome collisions (initial exposures) and interactions. Interactions include changes in host microbiome composition and functionality and/or host responses. Understanding the impact of other microbiomes and microbial communities on the microbiome and host are important considering the decline in human microbiota diversity in the developed world – paralleled by the surge of non-communicable, inflammatory-based diseases. Thus, surrounding ourselves with rich and diverse beneficial microbiomes and microbial communities to collide and interact with should help to diminish the loss in microbial diversity and protect from certain diseases. In the same vein, our microbiomes not only influence our health but potentially the health of those close to us. We also consider strategies for enhanced host microbiome collisions and interactions through the surrounding environment that ensure increased microbiome diversity and functionality contributing to enhanced symbiotic return to the host in terms of health benefit.  相似文献   

11.
The human body consists of innumerable multifaceted environments that predispose colonization by a number of distinct microbial communities, which play fundamental roles in human health and disease. In addition to community surveys and shotgun metagenomes that seek to explore the composition and diversity of these microbiomes, there are significant efforts to sequence reference microbial genomes from many body sites of healthy adults. To illustrate the utility of reference genomes when studying more complex metagenomes, we present a reference-based analysis of sequence reads generated from 55 shotgun metagenomes, selected from 5 major body sites, including 16 sub-sites. Interestingly, between 13% and 92% (62.3% average) of these shotgun reads were aligned to a then-complete list of 2780 reference genomes, including 1583 references for the human microbiome. However, no reference genome was universally found in all body sites. For any given metagenome, the body site-specific reference genomes, derived from the same body site as the sample, accounted for an average of 58.8% of the mapped reads. While different body sites did differ in abundant genera, proximal or symmetrical body sites were found to be most similar to one another. The extent of variation observed, both between individuals sampled within the same microenvironment, or at the same site within the same individual over time, calls into question comparative studies across individuals even if sampled at the same body site. This study illustrates the high utility of reference genomes and the need for further site-specific reference microbial genome sequencing, even within the already well-sampled human microbiome.  相似文献   

12.
Microbiomes exist in all ecosystems and are composed of diverse microbial communities. Perturbation to microbiomes brings about undesirable phenotypes in the hosts, resulting in diseases and disorders, and disturbs the balance of the associated ecosystems. Engineering of microbiomes can be used to modify structures of the microbiota and restore ecological balance. Consequently, microbiome engineering has been employed for improving human health and agricultural productivity. The importance and current applications of microbiome engineering, particularly in humans, animals, plants and soil is reviewed. Furthermore, we explore the challenges in engineering microbiome and the future of this field, thus providing perspectives and outlook of microbiome engineering.  相似文献   

13.
The possibility of using microbes to maintain health, and to prevent or treat disease is a topic as old as microbiology. However, one factor impeding the introduction of effective probiotics has been our very limited understanding of the composition of the human microbiome, as well as the biological requirements for these organisms. With advances in understanding the microbiome and its metagenome in humans and other mammals, we now can build a more robust scientific basis to develop probiotic strategies. Increasing knowledge of intramicrobial competition and cooperation, as well as host-microbe cross-signaling, will facilitate design of new probiotics and the modeling of their deployment, leading to eventual clinical trials.  相似文献   

14.
微生物组学及其在厌氧消化中的研究进展   总被引:1,自引:0,他引:1  
我国每年产生大量的有机废弃物,如果处置不当将会对生态、气候以及人类健康造成重大影响。厌氧消化是一种可靠的、绿色的、可持续的有机废弃物处理方式,但由于缺乏准确有效的监测手段,厌氧消化微观过程常常被视为“黑盒”。随着微生物组学的发展,学者们在菌群与运行参数关联性分析、代谢途径分析等方面有了更深入的认识。本文从“三阶段、四菌群”的厌氧消化过程出发,介绍了常用微生物组学的类型,包括:16S rRNA基因组、宏基因组、宏转录组和宏蛋白组;详细阐述了物种组成分析、α多样性分析、OTU相似性分析以及多元统计学分析等6种常用的微生物群落生物信息学分析方法;系统回顾了厌氧消化过程的微生物学研究进展,以期能为分析厌氧消化的微生物群落结构和功能、开发新的厌氧消化工艺和技术提供支持。  相似文献   

15.
16.
Fomites are a well-known source of microbial infections and previous studies have provided insights into the sojourning microbiome of fomites from various sources. Paper currency notes are one of the most commonly exchanged objects and its potential to transmit pathogenic organisms has been well recognized. Approaches to identify the microbiome associated with paper currency notes have been largely limited to culture dependent approaches. Subsequent studies portrayed the use of 16S ribosomal RNA based approaches which provided insights into the taxonomical distribution of the microbiome. However, recent techniques including shotgun sequencing provides resolution at gene level and enable estimation of their copy numbers in the metagenome. We investigated the microbiome of Indian paper currency notes using a shotgun metagenome sequencing approach. Metagenomic DNA isolated from samples of frequently circulated denominations of Indian currency notes were sequenced using Illumina Hiseq sequencer. Analysis of the data revealed presence of species belonging to both eukaryotic and prokaryotic genera. The taxonomic distribution at kingdom level revealed contigs mapping to eukaryota (70%), bacteria (9%), viruses and archae (~1%). We identified 78 pathogens including Staphylococcus aureus, Corynebacterium glutamicum, Enterococcus faecalis, and 75 cellulose degrading organisms including Acidothermus cellulolyticus, Cellulomonas flavigena and Ruminococcus albus. Additionally, 78 antibiotic resistance genes were identified and 18 of these were found in all the samples. Furthermore, six out of 78 pathogens harbored at least one of the 18 common antibiotic resistance genes. To the best of our knowledge, this is the first report of shotgun metagenome sequence dataset of paper currency notes, which can be useful for future applications including as bio-surveillance of exchangeable fomites for infectious agents.  相似文献   

17.
Studies of the microbiome have become increasingly sophisticated, and multiple sequence-based, molecular methods as well as culture-based methods exist for population-scale microbiome profiles. To link the resulting host and microbial data types to human health, several experimental design considerations, data analysis challenges, and statistical epidemiological approaches must be addressed. Here, we survey current best practices for experimental design in microbiome molecular epidemiology, including technologies for generating, analyzing, and integrating microbiome multiomics data. We highlight studies that have identified molecular bioactives that influence human health, and we suggest steps for scaling translational microbiome research to high-throughput target discovery across large populations.  相似文献   

18.
Nearly all Indigenous populations today suffer from worse health than their non‐Indigenous counterparts, and despite interventions against known factors, this health “gap” has not improved. The human microbiome—the beneficial, diverse microbial communities that live on and within the human body—is a crucial component in developing and maintaining normal physiological health. Disrupting this ecosystem has repercussions for microbial functionality, and thus, human health. In this article, we propose that modern‐day Indigenous population health may suffer from disrupted microbial ecosystems as a consequence of historical colonialism. Colonialism may have interrupted the established relationships between the environment, traditional lifeways, and microbiomes, altering the Indigenous microbiome with detrimental health consequences.  相似文献   

19.
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation.  相似文献   

20.
KM Singh  SJ Jakhesara  PG Koringa  DN Rank  CG Joshi 《Gene》2012,507(2):146-151
A major research goal in rumen microbial ecology is to understand the relationship between community composition and its function, particularly involved in fermentation process is of a potential interest. The buffalo rumen microbiota impacts human food safety as well as animal health. Although the bacteria of bovine rumen have been well characterized, techniques have been lacking to correlate total community structure with gene function. We applied 454 next generations sequencing technology to characterize general microbial diversity present in buffalo rumen metagenome and also identified the repertoire of microbial genes present, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that over six percent (6.44%) of the sequences from our buffalo rumen pool sample could be categorized as virulence genes and genes associated with resistance to antibiotic and toxic compounds (RATC), which is a higher proportion of virulence genes reported from metagenome samples of chicken cecum (5.39%), cow rumen (4.43%) and Sargasso sea (2.95%). However, it was lower than the proportion found in cow milk (11.33%) cattle faeces (8.4%), Antarctic marine derived lake (8.45%), human fecal (7.7%) and farm soil (7.79%). The dynamic nature of metagenomic data, together with the large number of RATC classes observed in samples from widely different ecologies indicates that metagenomic data can be used to track potential targets and relative amounts of antibiotic resistance genes in individual animals. In addition, these data can be also used to generate antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号