首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The presence and antimicrobial activity of antimicrobial peptides (AMPs) has been widely recognized as an evolutionary preserved part of the innate immune system. Based on evidence in animal models and humans, AMPs are now positioned as novel anti-infective agents. The current study aimed to evaluate the potential antimicrobial activity of ubiquicidin and small synthetic fragments thereof towards methicillin resistant Staphylococcus aureus (MRSA), as a high priority target for novel antibiotics. In vitro killing of MRSA by synthetic peptides derived from the alpha-helix or beta-sheet domains of the human cationic peptide ubiquicidin (UBI 1-59), allowed selection of AMPs for possible treatment of MRSA infections. The strongest antibacterial activity was observed for the entire peptide UBI 1-59 and for synthetic fragments comprising amino acids 31-38. The availability, chemical synthesis opportunities, and size of these small peptides, combined with their strong antimicrobial activity towards MRSA make these compounds promising candidates for antimicrobial therapy and detection of infections in man.  相似文献   

2.
Bacteria are frequently exposed to cationic antimicrobial peptides (CAMPs) from eukaryotic hosts (host defence peptides) or from prokaryotic competitors (bacteriocins). However, many bacteria, among them most of the major human pathogens, achieve CAMP resistance by MprF, a unique enzyme that modifies anionic phospholipids with l-lysine or l-alanine thereby introducing positive charges into the membrane surface and reducing the affinity for CAMPs. The lysyl or alanyl groups are derived from aminoacyl tRNAs and are usually transferred to phosphatidylglycerol (PG). Recent studies with MprF from Staphylococcus aureus demonstrated that production of Lys-PG only leads to CAMP resistance when an additional flippase domain of MprF is present that translocates Lys-PG and exposes it at the outer leaflet of the membrane. Thus, MprF exerts two specific functions that have hardly been found in other bacterial proteins. MprF proteins are crucial virulence factors of many human pathogens, which recommends them as targets for new anti-virulence drugs. Intriguingly, specific point mutations in mprF cause resistance to the CAMP-like antibiotic daptomycin in a yet unclear way that may involve altered Lys-PG synthesis and/or Lys-PG flipping capacities. Thus, a thorough characterization of MprF domains and functions will help to unravel how bacteria maintain and protect their cytoplasmic membranes.  相似文献   

3.
Qiu J  Luo M  Wang J  Dong J  Li H  Leng B  Zhang Q  Dai X  Zhang Y  Niu X  Deng X 《FEMS microbiology letters》2011,324(2):147-155
Staphylococcus aureus is a versatile pathogen that can cause life-threatening infections. The growing emergence of methicillin-resistant S.?aureus strains and a decrease in the discovery of new antibiotics warrant the search for new therapeutic targets to combat infections. Staphylococcus aureus produces many extracellular virulence factors that contribute to its pathogenicity. Therefore, targeting bacterial virulence as an alternative strategy to the development of new antimicrobials has gained great interest. α-Toxin is a 33.2-kDa, water-soluble, pore-forming toxin that is secreted by most S.?aureus strains. α-Toxin is essential for the pathogenesis of pneumonia, as strains lacking α-toxin display a profound defect in virulence. In this report, we demonstrate that isoalantolactone (IAL), a naturally occurring compound found in Inula helenium (Compositae), has no anti-S.?aureus activity as per MIC evaluation in vitro. However, IAL can markedly inhibit the expression of α-toxin in S.?aureus at very low concentrations. Furthermore, the in vivo data indicate that treatment with IAL protects mice from S.?aureus pneumonia.  相似文献   

4.
Peschel A  Collins LV 《Peptides》2001,22(10):1651-1659
Antimicrobial host defense peptides, such as defensins, protegrins, and platelet microbicidal proteins are deployed by mammalian skin, epithelia, phagocytes, and platelets in response to Staphylococcus aureus infection. In addition, staphylococcal products with similar structures and activities, called bacteriocins, inhibit competing microorganisms. Staphylococci have developed resistance mechanisms, which are either highly specific for certain host defense peptides or bacteriocins or which broadly protect against a range of cationic antimicrobial peptides. Experimental infection models can be used to study the molecular mechanisms of antimicrobial peptides, the peptide resistance strategies of S. aureus, and the therapeutic potential of peptides in staphylococcal diseases.  相似文献   

5.
Staphylococcus aureus (S. aureus), one of the most prevalent bacteria found in atopic dermatitis lesions, can induce ongoing infections and inflammation by downregulating the expression of host defence peptides in the skin. In addition, the emergence of the ‘superbug’ Methicillin-resistant S. aureus (MRSA) has made the treatment of these infections more challenging. Antimicrobial peptides (AMPs), due to their potent antimicrobial activity, limited evidence of resistance development, and potential immunomodulatory effects, have gained increasing attention as potential therapeutic agents for atopic dermatitis. In this study, we report a novel AMP, brevinin-1E-OG9, isolated from the skin secretions of Odorrana grahami, which shows potent antibacterial activity, especially against S. aureus. Based on the characteristics of the ‘Rana Box’, we designed a set of brevinin-1E-OG9 analogues to explore its structure–activity relationship. Brevinin-1E-OG9c-De-NH2 exhibited the most potent antimicrobial efficacy in both in vitro and ex vivo studies and attenuated inflammatory responses induced by lipoteichoic acid and heat-killed microbes. As a result, brevinin-1E-OG9c-De-NH2 might represent a promising candidate for the treatment of S. aureus skin infections.  相似文献   

6.
Endovascular infections, including endocarditis, are life-threatening infectious syndromes. Staphylococcus aureus is the most common world-wide cause of such syndromes with unacceptably high morbidity and mortality even with appropriate antimicrobial agent treatments. The increase in infections due to methicillin-resistant S. aureus (MRSA), the high rates of vancomycin clinical treatment failures and growing problems of linezolid and daptomycin resistance have all further complicated the management of patients with such infections, and led to high healthcare costs. In addition, it should be emphasized that most recent studies with antibiotic treatment outcomes have been based in clinical settings, and thus might well be influenced by host factors varying from patient-to-patient. Therefore, a relevant animal model of endovascular infection in which host factors are similar from animal-to-animal is more crucial to investigate microbial pathogenesis, as well as the efficacy of novel antimicrobial agents. Endocarditis in rat is a well-established experimental animal model that closely approximates human native valve endocarditis. This model has been used to examine the role of particular staphylococcal virulence factors and the efficacy of antibiotic treatment regimens for staphylococcal endocarditis. In this report, we describe the experimental endocarditis model due to MRSA that could be used to investigate bacterial pathogenesis and response to antibiotic treatment.  相似文献   

7.
Staphylococcus aureus is an important pathogen that continues to be a significant global health threat because of the prevalence of methicillin-resistant S. aureus strains (MRSA). The pathogenesis of this organism is partly attributed to the production of a large repertoire of cytotoxins that target and kill innate immune cells, which provide the first line of defence against S. aureus infection. Here we demonstrate that leukocidin A/B (LukAB) is required and sufficient for the ability of S. aureus, including MRSA, to kill human neutrophils, macrophages and dendritic cells. LukAB targets the plasma membrane of host cells resulting in cellular swelling and subsequent cell death. We found that S. aureus lacking lukAB are severely impaired in their ability to kill phagocytes during bacteria-phagocyte interaction, which in turn renders the lukAB-negative staphylococci more susceptible to killing by neutrophils. Notably, we show that lukAB is expressed in vivo within abscesses in a murine infection model and that it contributes significantly to pathogenesis of MRSA in an animal host. Collectively, these results extend our understanding of how S. aureus avoids phagocyte-mediated clearance, and underscore LukAB as an important factor that contributes to staphylococcal pathogenesis.  相似文献   

8.
Methicillin-resistant Staphylococcus aureus (MRSA) remains a major human pathogen. Traditionally, MRSA infections occurred exclusively in hospitals and were limited to immunocompromised patients or individuals with predisposing risk factors. However, recently there has been an alarming epidemic caused by community-associated (CA)-MRSA strains, which can cause severe infections that can result in necrotizing fasciitis or even death in otherwise healthy adults outside of healthcare settings. In the US, CA-MRSA is now the cause of the majority of infections that result in trips to the emergency room. It is unclear what makes CA-MRSA strains more successful in causing human disease compared with their hospital-associated counterparts. Here we describe a class of secreted staphylococcal peptides that have a remarkable ability to recruit, activate and subsequently lyse human neutrophils, thus eliminating the main cellular defense against S. aureus infection. These peptides are produced at high concentrations by standard CA-MRSA strains and contribute significantly to the strains' ability to cause disease in animal models of infection. Our study reveals a previously uncharacterized set of S. aureus virulence factors that account at least in part for the enhanced virulence of CA-MRSA.  相似文献   

9.
D-alanylation of lipoteichoic acid (LTA), allows Gram-positive bacteria to modulate their surface charge, regulate ligand binding and control the electromechanical properties of the cell wall. In this study, the role of D-alanyl LTA in the virulence of the extracellular pathogen Streptococcus agalactiae was investigated. We demonstrate that a DltA- isogenic mutant displays an increased susceptibility to host defence peptides such as human defensins and animal-derived cationic peptides. Accordingly, the mutant strain is more susceptible to killing by mice bone marrow-derived macrophages and human neutrophils than the wild-type strain. In addition, the virulence of the DltA- mutant is severely impaired in mouse and neonatal rat models. This mutant was eliminated more rapidly than the wild-type strain from the lung of three-week-old mice inoculated intranasally and, consequently, is unable to induce a pneumonia. Finally, after intravenous injection of three-week-old mice, the survival of the DltA- mutant is markedly reduced in the blood in comparison to that of the wild-type strain. We hypothesize that the decreased virulence of the DltA- mutant is a consequence of its increased susceptibility to cationic antimicrobial peptides and to killing by phagocytes. These results demonstrate that the D-alanylation of LTA contributes to the virulence of S. agalactiae.  相似文献   

10.
Staphylococcus aureus produces a large number of factors thought to contribute to virulence, although the precise role of some of these individual factors is not clearly defined. To investigate whether specific virulence factors might be responsible for the selection and dominance of certain genotypes of methicillin- and multiply resistant S. aureus (MRSA), the method of subtractive hybridisation was used to identify conserved DNA sequences associated with the clinical, clonal populations of S. aureus. The findings described in this report indicate that the method of subtractive hybridisation is a valuable tool to identify clone specific virulence factors, which might be of potential as diagnostic markers and as alternative vaccine targets.  相似文献   

11.
Cao L  Li Z  Zhang R  Wu Y  Li W  Cao Z 《Peptides》2012,36(2):213-220
Bacterial infection poses an increasing threat to global public health and new types of antibacterial agents are urgently needed to respond to the threat. Scorpion venom contains series of bioactive peptides, among which antibacterial peptide is an important part. Herein, a new antimicrobial peptide StCT2 was characterized from the venomous gland cDNA library of the Scorpiops tibetanus. The full-length cDNA of StCT2 is 369 nucleotides encoding the precursor that contains a putative 24 residues signal peptide, a presumed 14 residues mature peptide, and a putative 37 residues acidic propeptide at the C-terminus. The minimal inhibition concentrations (MICs) of StCT2 for Staphylococcus aureus were 6.25-25μg/ml, including antibiotic-resistant strains such as methicillin resistant S. aureus (MRSA). StCT2 was further found to show high in vivo antimicrobial activity by an S. aureus infection mouse model. StCT2 exerted its antimicrobial activity via a rapid bactericidal mechanism. Taken together, these results demonstrate the efficacy and general mechanism of StCT2 antimicrobial action and the therapeutic potential of StCT2 as a new antimicrobial peptide.  相似文献   

12.
A putative genome duplication event within the Silurana lineage has given rise to the tetraploid Cameroon clawed frog Silurana epitropicalis (Fischberg, Colombelli, and Picard, 1982). Peptidomic analysis of norepinephrine-stimulated skin secretions of S. epitropicalis led to identification of 10 peptides with varying degrees of growth-inhibitory activity against Escherichia coli and Staphylococcus aureus. Structural characterization identified the peptides as belonging to the magainin family (magainin-SE1), the caerulein-precursor fragment family (CPF-SE1, -SE2 and -SE3), the xenopsin-precursor fragment family (XPF-SE1, SE-2, SE-3 and -SE4), and the peptide glycine-leucine-amide family (PGLa-SE1 and -SE2). In addition, peptide phenylalanine-glutamine-amide (FLGALLGPLMNLLQ·NH(2)) was isolated from the secretions that lacked antimicrobial activity. Comparison of the multiplicity of orthologous peptides in S. epitropicalis and the diploid Silurana tropicalis indicates that extensive nonfunctionalization (deletion or silencing) of antimicrobial peptide genes has occurred after polyploidization in the Silurana lineage, as in the Xenopus lineage. CPF-SE2 (GFLGPLLKLGLKGAAKLLPQLLPSRQQ; MIC=2.5μM) and CPF-SE3 (GFLGSLLKTGLKVGSNLL·NH(2); MIC=5μM) showed potent growth-inhibitory activity against a range of clinical isolates of methicillin-resistant S. aureus (MRSA). Their utility as systemic anti-infective drugs is limited by significant hemolytic activity against human erythrocytes (LC(50)=50μM for CPF-SE2 and 220μM for CPF-SE3) but the peptides may find application as topical agents in treatment of MRSA skin infections and decolonization of MRSA carriers.  相似文献   

13.
Staphylococcus aureus (S. aureus), a major human pathogen of hospital and community acquired infections, is becoming resistant to almost all commercially available antibiotics. This has prompted development of antimicrobial peptides as therapeutic options. Alpha melanocyte stimulating hormone (α-MSH) is one such peptide known to possess antimicrobial properties. In the present study, we analyzed the antimicrobial activity of α-MSH against 75 clinical strains of S. aureus including both methicillin susceptible S. aureus (MSSA) and methicillin resistant S. aureus (MRSA) strains. Results of our previous study showed that membrane damage is the major mechanism of staphylocidal activity of α-MSH. In this context, we compared the various bacterial membrane parameters, viz., membrane fluidity, lipid composition, and surface charge of a few selected MSSA and MRSA strains that showed variable susceptibility to the melanocortin peptide. Our results showed that α-MSH killed both type of strains efficiently (≥70% killing in 84% clinical strains after exposure with 6μM of α-MSH for 1h). It was observed that compared to the α-MSH-susceptible strains, the α-MSH-non-susceptible strains had a different membrane order and phospholipid pattern. There was no consistent pattern of cell surface charge to distinguish α-MSH-susceptible strain from a non-susceptible strain. In conclusion, α-MSH possessed potential staphylocidal activity for both against MSSA and MRSA strains. S. aureus strains not susceptible to the peptide exhibited a rigid membrane and a higher amount of the cationic phospholipid as compared to the α-MSH-susceptible strains.  相似文献   

14.
Pathogenic bacteria have to cope with defence mechanisms mediated by adaptive and innate immunity of the host cells. Cationic antimicrobial peptides (CAMPs) represent one of the most effective components of the host innate immune response. Here we establish the function of Lmo1695, a member of the VirR-dependent virulence regulon, recently identified in Listeria monocytogenes. Lmo1695 encodes a membrane protein of 98 kDa with strong homology to the multiple peptide resistance factor (MprF) of Staphylococcus aureus. Like staphylococcal MprF, we found that Lmo1695 is involved in the synthesis of the membrane phospholipid lysylphosphatidylglycerol (L-PG). In addition, Lmo1695 is also essential for lysinylation of diphosphatidylglycerol (DPG), another phospholipid widely distributed in bacterial membranes. A Deltalmo1695 mutant lacking the lysinylated phospholipids was particularly susceptible to CAMPs of human and bacterial origin. The mutant strain infected both epithelial cells and macrophages only poorly and was attenuated for virulence when tested in a mouse model of infection. Lmo1695 is a member of a growing list of survival factors which enable growth of L. monocytogenes in different environments.  相似文献   

15.
Antimicrobial peptides (AMPs) represent a key component of innate host defence against bacterial pathogens. Bacterial resistance mechanisms usually depend on the characteristic positive charge of AMPs. However, several human cell types also produce anionic AMPs, mechanisms of resistance to which are poorly understood. Here we demonstrate that the skin commensal and leading nosocomial pathogen Staphylococcus epidermidis senses and efficiently inactivates the anionic AMP dermcidin. Dermcidin induced differential expression of global regulatory systems, leading to increased expression of proteases with the capacity to degrade dermcidin, particularly S. epidermidis SepA. A similar induction of extracellular proteolytic activity was found in Staphylococcus aureus, suggesting a common regulatory mechanism in staphylococci. Notably, human cationic AMPs also led to the activation of global regulators, but inactivation of dermcidin by SepA was much more effective than of the tested cationic peptides. The ability to react to the unusual, anionic dermcidin with effective countermeasures likely contributes to the extraordinary success of staphylococci as colonizers and infective agents on human epithelia. Our study indicates that staphylococci can react to human AMPs by specific mechanisms of resistance and establishes a crucial role for staphylococcal proteases in the interaction with human innate host defence.  相似文献   

16.
Previous studies have indicated that the silkworm model is useful for identifying virulence genes of Staphylococcus aureus, a human pathogenic bacterium. Here we examined the scope of S.?aureus virulence factors that can be evaluated using the silkworm model. Gene-disrupted mutants of the agr locus, arlS gene and saeS gene, which regulate the expression of cell surface adhesins and hemolysins, exhibited attenuated virulence in silkworms. Mutants of the hla gene encoding α-hemolysin, the hlb gene encoding β-hemolysin, and the psmα and psmβ operons encoding cytolysins, however, showed virulence in silkworms indistinguishable from that of the parent strain. Thus, these S.?aureus cytolysins are not required for virulence in silkworms. In contrast, the gene-disrupted mutants of clfB, fnbB and sdrC, which encode cell-wall-anchored proteins, attenuated S.?aureus virulence in silkworms. In addition, the mutant of the srtA gene encoding sortase A, which anchors cell-wall proteins, showed attenuated virulence in silkworms. These findings suggest that the silkworm model can be used to evaluate S.?aureus cell-wall proteins and regulatory proteins as virulence factors.  相似文献   

17.
阳离子抗菌肽的研究进展   总被引:4,自引:0,他引:4  
阳离子抗菌肽(Cationic antibacterial peptides)是生物体抵御外源性病原微生物的入侵而产生的一类小分子阳离子多肽,与传统的抗生素相比具有分子量小、抗菌谱广、热稳定性好、抗菌机理独特等优点。本文结合当今阳离子抗菌肽的研究现状和发展前景,从阳离子抗菌肽的理化性质、作用机理及其设计合成等方面进行了综述。  相似文献   

18.
The tailed frog Ascaphus truei occupies a unique position in phylogeny as the most primitive extant anuran and is regarded as the sister taxon to the clade of all other living frogs. Eight structurally related peptides, termed ascaphins 1-8, were isolated from norepinephrine-stimulated skin secretions of A. truei and were shown to possess differential growth inhibitory activity against Escherichia coli and Staphylococcus aureus. Ascaphins 2-7 may be represented by the consensus amino acid sequence GX2DX2KGAAKX3KTVAX2IANX.COOH whereas ascaphin-1 (GFRDVLKGAAKAFVKTVAGHIAN.NH2) and ascaphin-8 (GFKDLLKGAAKALVKTVLF.NH2) contain a C-terminally alpha-amidated residue. The ascaphins show no appreciable structural similarity with other families of antimicrobial peptides from frog skin but display limited sequence identity with the cationic, amphipathic alpha-helical peptides pandinin 1 and opistoporin 1, isolated from the venoms of African scorpions. Ascaphin-8 shows the highest potency against a range of pathogenic microorganisms but has the greatest haemolytic activity. The data indicate that the host defence strategy of using antimicrobial peptides in skin secretions arose early in the evolution of anurans.  相似文献   

19.
Increased prevalence of antibiotic-resistant bacteria has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and distribution in both hospital and community settings. Discovery and development of new agents to combat antibiotic-resistant bacteria is thus needed. This study therefore aimed to evaluate the ability of bovine lactoferrin (LF), peptides from two antimicrobial domains lactoferricin B (LFcin17-30) and lactoferrampin (LFampin265-284) and a chimeric construct (LFchimera) containing both peptides, as potential bactericidal agents against clinical isolates of antibiotic-resistant Staphylococcus aureus and Escherichia coli. Results in kinetics of growth show that LF chimera and peptides inhibited the growth of both bacterial species. By confocal microscopy and flow cytometry it was observed that LF and FITC-labeled peptides are able to interact with these bacteria and cause membrane permeabilization, as monitored by propidium iodide staining, these effects were decreased by preincubation with lipopolysaccharide in E. coli. By electron microscopy, a clear cellular damage was observed in bacteria after treatments with LFchimera and peptides, suggesting that interaction and membrane disruption are probably involved as a mechanism of action. In conclusion, results show that LFchimera, LF and peptides have potential as bactericidal agents in the antibiotic-resistant strains of S. aureus and E. coli and also the work strongly suggest that LFcin17-30 and LFampin265-284 acts synergistically with antibiotics against multidrug resistant EPEC and MRSA in vitro.  相似文献   

20.

Antimicrobial peptides (AMPs) from prokaryotic source also known as bacteriocins are ribosomally synthesized by bacteria belonging to different eubacterial taxonomic branches. Most of these AMPs are low molecular weight cationic membrane active peptides that disrupt membrane by forming pores in target cell membranes resulting in cell death. While these peptides known to exhibit broad-spectrum antimicrobial activity, including antibacterial and antifungal, they displayed minimal cytotoxicity to the host cells. Their antimicrobial efficacy has been demonstrated in vivo using diverse animal infection models. Therefore, we have discussed some of the promising peptides for their ability towards potential therapeutic applications. Further, some of these bacteriocins have also been reported to exhibit significant biological activity against various types of cancer cells in different experimental studies. In fact, differential cytotoxicity towards cancer cells as compared to normal cells by certain bacteriocins directs for a much focused research to utilize these compounds as novel therapeutic agents. In this review, bacteriocins that demonstrated antitumor activity against diverse cancer cell lines have been discussed emphasizing their biochemical features, selectivity against extra targets and molecular mechanisms of action.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号