首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of phytohormones by plant-growth promoting rhizobacteria is considered to be an important mechanism by which these bacteria promote plant growth. In this study the importance of indole-3-acetic acid (IAA) produced by Azospirillum brasilense Sp245 in the observed plant growth stimulation was investigated by using Sp245 strains genetically modified in IAA production. Firstly wild-type A. brasilense Sp245 and an ipdC knock-out mutant which produces only 10% of wild-type IAA levels (Vande Broek et al., J Bacteriol 181:1338–1342, 1999) were compared in a greenhouse inoculation experiment for a number of plant parameters, thereby clearly demonstrating the IAA effect in plant growth promotion. Secondly, the question was addressed whether altering expression of the ipdC gene, encoding the key enzyme for IAA biosynthesis in A. brasilense, could also contribute to plant growth promotion. For that purpose, the endogenous promoter of the ipdC gene was replaced by either a constitutive or a plant-inducible promoter and both constructs were introduced into the wild-type strain. Based on a greenhouse inoculation experiment it was found that the introduction of these recombinant ipdC constructs could further improve the plant-growth promoting effect of A. brasilense. These data support the possibility of constructing Azospirillum strains with better performance in plant growth promotion.  相似文献   

2.
The effects of six water-soluble vitamins on tryptophan-dependent synthesis of indole-3-acetic acid in Azospirillum brasilense were investigated. A multifactorial regression analysis was employed to produce models of indole-3-acetic acid synthesis versus concentrations of tryptophan and the vitamins added to the growth medium. Very low levels of the B-group vitamins added at 10 to 100 microg l(-1) affected production of indole-3-acetic acid in A. brasilense. The largest release of this phytohormone was observed after amendment with pyridoxine and nicotinic acid. Results of the study suggest a role these vitamins may fulfil in the regulation of indole-3-acetic acid synthesis in A. brasilense.  相似文献   

3.
Batch and fed batch cultures of Azospirillum brasilense Sp245 were conducted in a bioreactor. Growth response, IAA biosynthesis and the expression of the ipdC gene were monitored in relation to the environmental conditions (temperature, availability of a carbon source and aeration). A. brasilense can grow and produce IAA in batch cultures between 20 and 38 degrees C in a standard minimal medium (MMAB) containing 2.5 gl(-1)l-malate and 50 microgml(-1) tryptophan. IAA synthesis requires depletion of the carbon source from the growth medium in batch culture, causing growth arrest. No significant amount of IAA can be detected in a fed batch culture. Varying the concentration of tryptophan in batch experiments has an effect on both growth and IAA synthesis. Finally we confirmed that aerobic growth inhibits IAA synthesis. The obtained profile for IAA synthesis coincides with the expression of the indole-3-pyruvate decarboxylase gene (ipdC), encoding a key enzyme in the IAA biosynthesis of A. brasilense.  相似文献   

4.
Disruption of ipdC, a gene involved in indole-3-acetic acid (IAA) production by the indole pyruvate pathway in Azospirillum brasilense Sp7, resulted in a mutant strain that was not impaired in IAA production with lactate or pyruvate as the carbon source. A tryptophan auxotroph that is unable to convert indole to tryptophan produced IAA if tryptophan was present but did not synthesise IAA from indole. Similar results were obtained for a mutant strain with additional mutations in the genes ipdC and trpD. This suggests the existence of an alternative Trp-dependent route for IAA synthesis. On gluconate as a carbon source, IAA production by the ipdC mutant was inhibited, suggesting that the alternative route is regulated by catabolite repression. Using permeabilised cells we observed the enzymatic conversion of tryptamine and indole-3-acetonitrile to IAA, both in the wild-type and in the ipdC mutant. IAA production from tryptamine was strongly decreased when gluconate was the carbon source.  相似文献   

5.
6.
7.
Abstract Inoculation of wheat seedlings with Azospirillum brasilense Sp6 produced an increase in the number and length of the lateral roots as a plant response. Inoculation with a Nif mutant, A. brasilense SpF103, which is producer of indole-3-acetic acid (IAA), yielded a very similar plant response. However, inoculation with a Nif mutant, A. brasilense SpF57, which is a low producer of IAA, did not elitic any response from the plant. The data suggest that the root system response of wheat seedlings to bacterial inoculation is due mainly to production of auxin-type substances by the microorganism.  相似文献   

8.
9.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE diethylaminoethyl - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - ICA indole-3-carboxylic acid - IEt indole-3-ethanol - PVP polyvinylpyrrolidone  相似文献   

10.
11.
Stem segments excised from light-grown Pisum sativum L. (cv. Little Marvel) plants elongated in the presence of indole-3-acetic acid and its precursors, except for L-tryptophan, which required the addition of gibberellin A, for induction of growth. Segment elongation was promoted by D-tryptophan without a requirement for gibberellin, and growth in the presence of both D-tryptophan and L-tryptophan with gibberellin A3, was inhibited by the D-aminotransferase inhibitor D-cycloserine. Tryp-tophan racemase activity was detected in apices and promoted conversion of L-tryptophan to the D isomer; this activity was enhanced by gibberellin A3. When applied to apices of intact untreated plants, radiolabeled D-tryptophan was converted to indole-3-acetic acid and indoleacetylaspartic acid much more readily than L-tryptophan. Treatment of plants with gibberellin A3, 3 days prior to application of labeled tryptophan increased conversion of L-tryptophan to the free auxin and its conjugate by more than 3-fold, and led to labeling of N-malonyl-D-tryptophan. It is proposed that gibberellin increases the biosynthesis of indole-3-acetic acid by regulating the conversion of L-tryptophan to D-tryptophan, which is then converted to the auxin.  相似文献   

12.
Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparticles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au0. Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.  相似文献   

13.
14.
15.
16.
17.
Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires addition of the substrates for induction and is oxygen dependent. The highest activity is obtained when the concentration of inducer is 0.2 mM. Spectrophotometric data are consistent with the suggestion that the indole ring is broken during degradation of IAA. We hypothesize that the enzyme catalyzes an oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation product in the proposed pathway.  相似文献   

18.
Kai K  Wakasa K  Miyagawa H 《Phytochemistry》2007,68(20):2512-2522
A search was made for conjugates of indole-3-acetic acid (IAA) in rice (Oryza sativa) using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in order to elucidate unknown metabolic pathways for IAA. N-beta-d-Glucopyranosyl indole-3-acetic acid (IAA-N-Glc) was found in an alkaline hydrolysate of rice extract. A quantitative analysis of 3-week-old rice demonstrated that the total amount of IAA-N-Glc was equal to that of IAA. A LC-ESI-MS/MS-based analysis established that the major part of IAA-N-Glc was present as bound forms with aspartate and glutamate. Their levels were in good agreement with the total amount of IAA-N-Glc during the vegetative growth of rice. Further detailed analysis showed that both conjugates highly accumulated in the root. The free form of IAA-N-Glc accounted for 60% of the total in seeds but could not be detected in the vegetative tissue. An incorporation study using deuterium-labeled compounds showed that the amino acid conjugates of IAA-N-Glc were biosynthesized from IAA-amino acids. IAA-N-Glc and/or its conjugates were also found in extracts of Arabidopsis, Lotus japonicus, and maize, suggesting that N-glucosylation of indole can be the common metabolic pathway of IAA in plants.  相似文献   

19.
Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号