首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Although indole-3-acetic acid (IAA) is a well-known plant hormone, the main IAA biosynthetic pathway from l-tryptophan (Trp) via indole-3-pyruvic acid (IPyA) has yet to be elucidated. Previous studies have suggested that IAA is produced by Enterobacter cloacae isolated from the rhizosphere of cucumbers and its biosynthetic pathway may possibly be the same as that in plants. To elucidate this pathway, the IAA biosynthetic gene was isolated from a genomic library of E. cloacae by assaying for the ability to convert Trp to IAA. DNA sequence analysis showed that this gene codes for only one enzyme and its predicted protein sequence has extensive homology with pyruvate decarboxylase in yeast and Zymomonas mobilis. Cell-free extracts prepared from Escherichia coli harboring this gene could convert IPyA to indole-3-acetaldehyde (IAAld). These results clearly show that this pathway is mediated only by indolepyruvate decarboxylase, which catalyzes the conversion of IPyA to IAAld.  相似文献   

2.
【目的】吲哚-3-乙酸是调控植物生长发育和生理活动的重要激素,吲哚-3-乙酸N-乙酰转移酶YsnE在吲哚-3-乙酸合成中发挥重要作用,本研究拟解析解淀粉芽胞杆菌中YsnE参与吲哚-3-乙酸合成的代谢途径。【方法】通过基因ysnE缺失和强化表达,分析ysnE对吲哚-3-乙酸合成影响,结合吲哚-3-乙酸合成中间物(吲哚丙酮酸、吲哚乙酰胺、色胺和吲哚乙腈)添加和体外酶转化实验,解析ysnE参与吲哚-3-乙酸合成的代谢途径。【结果】明确了YsnE在解淀粉芽胞杆菌HZ-12吲哚-3-乙酸合成中发挥重要作用。发现ysnE缺失菌株中的吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈利用显著降低,揭示了YsnE主要发挥吲哚丙酮酸脱羧酶YclB和吲哚乙酰胺水解酶/腈水解酶/腈水合酶YhcX的功能,并通过参与吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径来影响吲哚-3-乙酸合成。【结论】初步揭示了YsnE通过影响吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径参与吲哚-3-乙酸合成的代谢机理,为吲哚-3-乙酸合成途径解析和代谢工程育种构建吲哚-3-乙酸高产菌株奠定了基础。  相似文献   

3.
Indole-3-acetaldehyde (IAAId) was detected in the culture supernatantof Bradyrhizobium elkanii. Deuteriumlabelled L-tryptophan (Trp)was incorporated into IAAId and indole-3-acetic acid (IAA),suggesting that B. elkanii produces IAA via IAAId from Trp.In B. elkanii cell suspension, indole-3-pyruvic acid (IPyA)was converted to IAAId, and exogenously added IAAId was rapidlyconverted to IAA. Furthermore, the activity of indolepyruvatedecarboxylase (IPDC), which catalyzes the decarboxylation ofIPyA to produce IAAId and is a key enzyme for IPyA pathway,was detected in B. elkanii cell-free extract. The IPDC activitydepended on Mg2+ and thiamine pyrophosphate, cofactors of decarboxylation.This mounting evidence strongly suggests that IAA synthesisoccurs via IPyA pathway (Trp IPyA p IAAId IAA) in B. elkanii. (Received December 11, 1995; Accepted March 4, 1996)  相似文献   

4.
Auxin biosynthesis was analyzed in a maize (Zea mays) kernel culture system in which the seeds develop under physiological conditions similar to the in vivo situation. This system was modified for precursor feeding experiments. Tryptophan (Trp) is efficiently incorporated into indole-3-acetic acid (IAA) with retention of the 3, 3' bond. Conversion of Trp to IAA is not competed by indole. Labeling with the general precursors [U-(13)C(6)]glucose and [1, 2-(13)C(2)]acetate followed by retrobiosynthetic analysis strongly suggest that Trp-dependent IAA synthesis is the predominant route for auxin biosynthesis in the maize kernel. The synthesis of IAA from indole glycerol phosphate and IAA formation via condensation of indole with an acetyl-coenzyme A or phosphoenolpyruvate derived metabolite can be excluded.  相似文献   

5.
The biosynthetic route of the key plant hormone, indole-3-acetic acid (IAA) has confounded generations of biologists. Evidence in higher plants has implicated two auxin intermediates with roles established in bacteria: indole-3-acetamide (IAM) and indole-3-pyruvic acid. Herein, the IAM pathway is investigated in pea (Pisum sativum), a model legume. The compound was not detected in pea tissue, although evidence was obtained for its presence in Arabidopsis, tobacco, and maize. Deuterium-labeled tryptophan was not converted to IAM in pea roots, despite being converted to IAA. After feeds of deuterium-labeled IAM, label was recovered in the IAA conjugate IAA-aspartate (IAAsp), although there was little or no labeling of IAA itself. Plants treated with IAM did not exhibit high-IAA phenotypes, and did not accumulate IAA. This evidence, taken together, indicates that although exogenous IAM may be converted to IAA (and further to IAAsp), the IAM pathway does not operate naturally in pea roots.  相似文献   

6.
The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.  相似文献   

7.
目的:利用重组大肠杆菌全细胞转化色氨酸生产IAA.方法:在大肠杆菌胞内构建两条全新的IAA合成途径,即吲哚-3-乙酰胺(indole-3-acetamide,IAM)途径和色胺(tryptamine,TRP)途径.结果:IAM途径涉及两个酶,分别是色氨酸-2-单加氧酶(IAAM)和酰胺酶(AMI1),构建好的重组大肠杆...  相似文献   

8.
Rhizospheric bacterial strains are known to produce indole-3-acetic acid (IAA) through different pathways, and such IAA may be beneficial to plants at low concentrations. IAA biosynthesis by a natural isolate of Azospirillum brasilense SM was studied and observed to be tryptophan-inducible and -dependent in nature. While our work demonstrated the operation of the indole pyruvic acid pathway, the biochemical and molecular evidence for the genes of the indole acetamide (IAM) pathway were lacking in A. brasilense SM. This led us to use the IAM pathway genes as targets for metabolic engineering, with the aim of providing an additional pathway of IAA biosynthesis and improving IAA levels in A. brasilense SM. The introduction of the heterologous IAM pathway, consisting of the iaaM and iaaH genes, not only increased the IAA levels by threefold but also allowed constitutive expression of the same genes along with efficient utilization of IAM as a substrate. Such an engineered strain showed a superior effect on the lateral branching of sorghum roots as well as the dry weight of the plants when compared with the wild-type strain. Such an improved bioinoculant could be demonstrated to enhance root proliferation and biomass productivity of treated plants compared with the parental strain.  相似文献   

9.
Indole-3-acetic acid (IAA) is a fundamental phytohormone with the ability to control many aspects of plant growth and development. Pseudomonas sp. strain UW4 is a rhizospheric plant growth-promoting bacterium that produces and secretes IAA. While several putative IAA biosynthetic genes have been reported in this bacterium, the pathways leading to the production of IAA in strain UW4 are unclear. Here, the presence of the indole-3-acetamide (IAM) and indole-3-acetaldoxime/indole-3-acetonitrile (IAOx/IAN) pathways of IAA biosynthesis is described, and the specific role of two of the enzymes (nitrilase and nitrile hydratase) that mediate these pathways is assessed. The genes encoding these two enzymes were expressed in Escherichia coli, and the enzymes were isolated and characterized. Substrate-feeding assays indicate that the nitrilase produces both IAM and IAA from the IAN substrate, while the nitrile hydratase only produces IAM. The two nitrile-hydrolyzing enzymes have very different temperature and pH optimums. Nitrilase prefers a temperature of 50°C and a pH of 6, while nitrile hydratase prefers 4°C and a pH of 7.5. Based on multiple sequence alignments and motif analyses, physicochemical properties and enzyme assays, it is concluded that the UW4 nitrilase has an aromatic substrate specificity. The nitrile hydratase is identified as an iron-type metalloenzyme that does not require the help of a P47K activator protein to be active. These data are interpreted in terms of a preliminary model for the biosynthesis of IAA in this bacterium.  相似文献   

10.
Stepanova AN  Yun J  Robles LM  Novak O  He W  Guo H  Ljung K  Alonso JM 《The Plant cell》2011,23(11):3961-3973
The effects of auxins on plant growth and development have been known for more than 100 years, yet our understanding of how plants synthesize this essential plant hormone is still fragmentary at best. Gene loss- and gain-of-function studies have conclusively implicated three gene families, CYTOCHROME P450 79B2/B3 (CYP79B2/B3), YUCCA (YUC), and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANSFERASE-RELATED (TAA1/TAR), in the production of this hormone in the reference plant Arabidopsis thaliana. Each of these three gene families is believed to represent independent routes of auxin biosynthesis. Using a combination of pharmacological, genetic, and biochemical approaches, we examined the possible relationships between the auxin biosynthetic pathways defined by these three gene families. Our findings clearly indicate that TAA1/TARs and YUCs function in a common linear biosynthetic pathway that is genetically distinct from the CYP79B2/B3 route. In the redefined TAA1-YUC auxin biosynthetic pathway, TAA1/TARs are required for the production of indole-3-pyruvic acid (IPyA) from Trp, whereas YUCs are likely to function downstream. These results, together with the extensive genetic analysis of four pyruvate decarboxylases, the putative downstream components of the TAA1 pathway, strongly suggest that the enzymatic reactions involved in indole-3-acetic acid (IAA) production via IPyA are different than those previously postulated, and a new and testable model for how IAA is produced in plants is needed.  相似文献   

11.
The in vivo regulation of intermediate reactions in the pathway of tryptophan synthesis in Neurospora crassa was examined in a double mutant (tr-2, tr-3) which lacks the functions of the first and last enzymes in the pathway from chorismic acid to tryptophan. The double mutant can convert anthranilic acid to indole and indole-3-glycerol, and the production of these indolyl compounds by germinated conidia was used to estimate the activity of the intermediate enzymes in the pathway. Indole-synthesizing activity was maximal in germinated conidia obtained from cultures in which the levels of l-tryptophan were growth-limiting; the formation of this activity was markedly repressed when the levels of l-tryptophan exceeded those required for maximal growth. d-, 5-methyl-dl-, and 6-methyl-dl-tryptophan were less effective than l-tryptophan, and 4-methyl-dl-tryptophan, tryptamine, and indole-3-acetic acid were ineffective in repressing the formation of indole-synthesizing activity; anthranilic acid stimulated the formation of indole-synthesizing activity. Preformed indole-synthesizing activity was strongly and specifically inhibited by low levels of l-tryptophan; several related compounds were ineffective as inhibitors. These results suggest that, in addition to repression, an end product feedback inhibition mechanism is operative on an intermediate enzyme(s) in tryptophan biosynthesis. The relation of these results to other in vivo and in vitro studies and to general aspects of the regulation of tryptophan biosynthesis in N. crassa are discussed.  相似文献   

12.
Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass tryptophan altogether. It was also postulated that different plants use different pathways, further adding to the complexity. In 2011, however, it was suggested that one of the four tryptophan-dependent pathways, via indole-3-pyruvic acid (IPyA), is the main pathway in Arabidopsis thaliana,1 although concurrent operation of one or more other pathways has not been excluded. We recently showed that, for seeds of Pisum sativum (pea), it is possible to go one step further.2 Our new evidence indicates that the IPyA pathway is the only tryptophan-dependent IAA synthesis pathway operating in pea seeds. We also demonstrated that the main auxin in developing pea seeds, 4-chloroindole-3-acetic acid (4-Cl-IAA), which accumulates to levels far exceeding those of IAA, is synthesized via a chlorinated version of the IPyA pathway.  相似文献   

13.
The phytohormone indole-3-acetic acid (IAA) plays a vital role in plant growth and development as a regulator of numerous biological processes. Its biosynthetic pathways have been studied for decades. Recent genetic and in vitro labeling evidence indicates that IAA in Arabidopsis thaliana and other plants is primarily synthesized from a precursor that is an intermediate in the tryptophan (Trp) biosynthetic pathway. To determine which intermediate(s) acts as the possible branchpoint for the Trp-independent IAA biosynthesis in plants, we took an in vivo approach by generating antisense indole-3-glycerol phosphate synthase (IGS) RNA transgenic plants and using available Arabidopsis Trp biosynthetic pathway mutants trp2-1 and trp3-1. Antisense transgenic plants display some auxin deficient-like phenotypes including small rosettes and reduced fertility. Protein gel blot analysis indicated that IGS expression was greatly reduced in the antisense lines. Quantitative analyses of IAA and Trp content in antisense IGS transgenic plants and Trp biosynthetic mutants revealed striking differences. Compared with wild-type plants, the Trp content in all the transgenic and mutant plants decreased significantly. However, total IAA levels were significantly decreased in antisense IGS transgenic plants, but remarkably increased in trp3-1 and trp2-1 plants. These results suggest that indole-3-glycerol phosphate (IGP) in the Arabidopsis Trp biosynthetic pathway serves as a branchpoint compound in the Trp-independent IAA de novo biosynthetic pathway.  相似文献   

14.
Etiolated seedling tissues of aseptically grown squash (Cucurbitamaxima Duch) contain indole-3-acetamide (IAM) as a natural endogenouscompound, conclusively identified by gas chromatography-massspectrometry (GC-MS). Roots of aseptically raised seedlingsalso contain amide hydrolysing activity, which converts IAMto IAA, indoleacetonitrile (IAN) to IAM and IAA, and 1-naphthaleneacetamideto 1-naphthaleneacetic acid. This activity was enriched 48-foldby fractional precipitation with ammonium sulphate, Sephadexgel nitration and anion exchange chromatography. Being hydrolytic,it works equally well in air and in vacuo, without added cofactors.The partially purified enzyme works optimally between pH 7 and7.5, and a Km value of 80 µM was calculated with IAM asthe substrate. The product of this reaction was definitivelyidentified as IAA by GC-MS. The temperature optimum of thisamidohydrolase lies around 45°C, and it is stable to freezing.A comparison of its properties with the amidohydrolase of Agrobacteriumor crown gall tissue, shows it to be different. In view of thenatural occurrence of both IAM and the amidohydrolase, it issuggested that the IAM pathway of IAA biogenesis is feasiblein etiolated squash seedlings. 4Deceased 2/2-1993.  相似文献   

15.
Auxin is an important plant hormone essential for many aspects of plant growth and development. Indole-3-acetic acid (IAA) is the most studied auxin in plants, and its biosynthesis pathway has been investigated for over 70 years. Although the complete picture of auxin biosynthesis remains to be elucidated, remarkable progress has been made recently in understanding the mechanism of IAA biosynthesis. Genetic and biochemical studies demonstrate that IAA is mainly synthesized from l-tryptophan (Trp) via indole-3-pyruvate by two-step reactions in Arabidopsis. While IAA is also produced from Trp via indole-3-acetaldoxime in Arabidopsis, this pathway likely plays an auxiliary role in plants of the family Brassicaceae. Recent studies suggest that the Trp-independent pathway is not a major route for IAA biosynthesis, but they reveal an important role for a cytosolic indole synthase in this pathway. In this review, I summarize current views and future prospects of IAA biosynthesis research in plants.  相似文献   

16.
17.
Insect galls are abnormal plant tissues induced by galling insects. The galls are used for food and habitation, and the phytohormone auxin, produced by the insects, may be involved in their formation. We found that the silkworm, a non-galling insect, also produces an active form of auxin, indole-3-acetic acid (IAA), by de novo synthesis from tryptophan (Trp). A detailed metabolic analysis of IAA using IAA synthetic enzymes from silkworms indicated an IAA biosynthetic pathway composed of a three-step conversion: Trp → indole-3-acetaldoxime → indole-3-acetaldehyde (IAAld) → IAA, of which the first step is limiting IAA production. This pathway was shown to also operate in gall-inducing sawfly. Screening of a chemical library identified two compounds that showed strong inhibitory activities on the conversion step IAAld → IAA. The inhibitors can be efficiently used to demonstrate the importance of insect-synthesized auxin in gall formation in the future.  相似文献   

18.
【背景】前期结果表明,DDT降解菌株Chryseobacterium sp. PYR2可高效去除土壤中的DDT等污染物,具有潜在的应用价值,但该菌对植物的影响尚不清楚。【目的】探讨菌株Chryseobacterium sp. PYR2对植物的促生作用及其机理,为后续开发DDT降解及植物促生双效功能菌剂提供理论依据。【方法】配制该菌株的不同梯度稀释菌悬液,用纸卷发芽法和盆栽法研究菌悬液对小麦种子萌发和植株生长的影响;Salkowski法测定PYR2合成吲哚-3-乙酸(Indole-3-acetic acid,IAA)量;单因素实验研究不同培养条件对菌株生长及IAA合成的影响;液相色谱-串联质谱-多反应监测(LC-MS/MS-MRM)方法分析IAA在PYR2菌体内的生物合成途径。【结果】PYR2菌悬液可明显提高小麦种子萌发率并促进小麦植株的生长,小麦的侧根数、株高、鲜重、干重等指标均明显提高。该作用是由于菌株PYR2可以合成植物生长激素IAA。最适IAA合成条件:温度30°C,pH 7.0-8.0,盐浓度0.5%,L-色氨酸50mg/L。代谢液中检测到色醇、色胺和吲哚-3-乙酰胺3种中间代谢产物,推测PYR2体内存在3条IAA合成途径,分别为吲哚-3-丙酮酸(IPy A)、TAM和IAM途径。【结论】菌株PYR2对小麦具有明显的促生效果,是由于其具有多条高效合成IAA的代谢途径,表明其在农药污染土壤的生物修复及作物种植中具有潜在的应用前景。  相似文献   

19.
The enzymatic synthesis of indole-3-acetic acid (IAA) from indole by an in vitro preparation from maize (Zea mays L.) that does not use tryptophan (Trp) as an intermediate is described. Light-grown seedlings of normal maize and the maize mutant orange pericarp were shown to contain the necessary enzymes to convert [14C]indole to IAA. The reaction was not inhibited by unlabeled Trp and neither [14C]Trp nor [14C]serine substituted for [14C]indole in this in vitro system. The reaction had a pH optimum greater than 8.0, required a reducing environment, and had an oxidation potential near that of ascorbate. The results obtained with this in vitro enzyme preparation provide strong, additional evidence for the presence of a Trp-independent IAA biosynthesis pathway in plants.  相似文献   

20.
The plant tryptophan (Trp) biosynthetic pathway produces many secondary metabolites with diverse functions.Indole-3-acetic acid (IAA),proposed as a derivative from Trp or its precursors,plays an essential role in plant growth and development.Although the Trp-dependant and Trp-independent IAA biosynthetic pathways have been proposed,the enzymes,reactions and regulatory mechanisms are largely unknown.In Arabidopsis,indole-3-glycerol phosphate (IGP) is suggested to serve as a branchpoint component in the Trp-independent IAA biosynthesis.To address whether other enzymes in addition to Trp synthase α(TSA1) catalyze IGP cleavage,we identified and characterized an indole synthase (INS) gene,a homolog of TSA1 in Arabidopsis.INS exhibits different subcellular localization from TSA1 owing to the lack of chloroplast transit peptide (cTP).In silico data show that the expression levels of INS and TSA1 in all examined organs are quite different.Histochemical staining of INS promoter-GUS transgenic lines indicates that INS is expressed in vascular tissue of cotyledons,hypocotyls,roots and rosette leaves as well as in flowers and siliques.INS is capable of complementing the Trp auxotrophy of Escherichia coil △trpA strain,which is defective in Trp synthesis due to the deletion of TSA.This implies that INS catalyzes the conversion of IGP to indole and may be involved in the biosynthesis of Trp-independent IAA or other secondary metabolites in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号