首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enterotoxin from Vibrio cholerae is a protein of 100,000 mol wt which stimulates adenylate cyclase activity ubiquitously. The binding of biologically active 125I-labeled choleragen to cell membranes is of extraordinary affinity and specificity. The binding may be restricted to membrane-bound ganglioside GMI. This ganglioside can be inserted into membranes from exogenous sources, and the increased toxin binding in such cells can be reflected by an increased sensitivity to the biological effects of the toxin. Features of the toxin-activated adenylate cyclase, including conversion of the enzyme to a GTP-sensitive state, and the increased sensitivity of activation by hormones, suggest analogies between the basic mechanism of action of choleragen and the events following binding of hormones to their receptors. The action of the toxin is probably not mediated through intermediary cytoplasmic events, suggesting that its effects are entirely due to processes involving the plasma membrane. The kinetics of activation of adenylate cyclase in erythrocytes from various species as well as in rat adipocytes suggest a direct interaction between toxin and the cyclase enzyme which is difficult to reconcile with catalytic mechanisms of adenylate cyclase activation. Direct evidence for this can be obtained from the comigration of toxin radioactivity with adenylate cyclase activity when toxin-activated membranes are dissolved in detergents and chromatographed on gel filtration columns. Agarose derivatives containing the “active” subunit of the toxin can specifically adsorb adenylate cyclase activity, and specific antibodies against the choleragen can be used for selective immunoprecipitation of adenylate cyclase activity from detergentsolubilized preparations of activated membranes. It is proposed that toxin action involves the initial formation of an inactive toxin-ganglioside complex which subsequently migrates and is somehow transformed into an active species which involves relocation within the two-dimensional structure of the membrane with direct pertubation of adenylate cyclase molecules (virtually irreversibly). These studies suggest new insights into the normal mechanisms by which hormone receptors modify membrane functions.  相似文献   

2.
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.  相似文献   

3.
E O'Keefe  P Cuatrecasas 《Life sciences》1977,21(11):1649-1653
Ganglioside GM1, which can insert spontaneously into the membrane of intact cells, has been measured after insertion into transformed fibroblasts by cholera toxin (choleragen) binding, for which ganglioside GM1 is the natural receptor. Choleragen binding is not altered in starved, quiescent cells over a four-day period. Dividing cells show decreased binding in proportion to cell division. Thus, neither dividing nor quiescent cells appear to metabolize or otherwise degrade this membrane component.  相似文献   

4.
The influence of Vibrio cholerae enterotoxin (choleragen) on the response of adenylate cyclase to hormones and GTP, and on the binding of 125I-labeled glucagon to membranes, has been examined primarily in rat adipocytes, but also in guinea pig ileal mucosa and rat liver. Incubation of fat cells with choleragen converts adenylate cyclase to a GTP-responsive state; (-)-isoproterenol has a similar effect when added directly to membranes. Choleragen also increases by two- to fivefold the apparent affinity of (-)-isoproterenol, ACTH, glucagon, and vasoactive intestinal polypeptide for the activation of adenylate cyclase. This effect on vasoactive intestinal polypeptide action is also seen with the enzyme of guinea pig ileal mucosa; the toxin-induced sensitivity to VIP may be relevant in the pathogenesis of cholera diarrhea. The apparent affinity of binding of 125I-labeled glucagon is increased about 1.5- to twofold in choleragen-treated liver and fat cell membranes. The effects of choleragen on the response of adenylate cyclase to hormones are independent of protein synthesis, and they are not simply a consequence to protracted stimulation of the enzyme in vivo or during preparation of the membranes. Activation of cyclase in rat erythrocytes by choleragen is not impaired by agents which disrupt microtubules or microfilaments, and it is still observed in cultured fibroblasts after completely suppressing protein synthesis with diphtheria toxin. Choleragen does not interact directly with hormone receptor sites. Simple occupation of the choleragen binding sites with the analog, choleragenoid, does not lead to any of the biological effects of the toxin.  相似文献   

5.
Summary The lag period for activation of adenylate cyclase by choleragen was shorter in mouse neuroblastoma N18 cells than in rat glial C6 cells. N18 cells have 500-fold more toxin receptors than C6 cells. Treatment of C6 cells with ganglioside GM1 increased the number of toxin receptors and decreased the lag phase. Choleragen concentration also effected the lag phase, which increased as the toxin concentration and the amount of toxin bound decreased. The concentration, however, required for half-maximal activation of adenylate cyclase depended on the exposure time; at 1.5, 24, and 48 hr, the values were 200, 1.1., and 0.35pm, respectively. Under the latter conditions, each cell was exposed to 84 molecules of toxin.The length of the lag period was temperature-dependent. When exposed to choleragen at 37, 24, and 20 °C, C6 cells began to accumulate cyclic AMP after 50, 90, and 180 min, respectively. In GM1-treated cells, the corresponding times were 35, 60, and 120 min. Cells treated with toxin at 15 °C for up to 22 hr did not accumulate cAMP, whereas above this temperature they did. Antiserum to choleragen, when added prior to choleragen, completely blocked the activation of adenylate cyclase. When added after the toxin, the antitoxin lost its inhibitory capability in a time and temperature-dependent manner. Cells, however, could be preincubated with toxin at 15 °C, and the antitoxin was completely effective when added before the cells were warmed up. Finally, cells exposed to choleragen for >10 min at 37 °C accumulated cyclic AMP when shifted to 15 °C. Under optimum conditions at 37°C, the minimum lag period for adenylate cyclase activation in these cells was 10 min. These findings suggest that the lag period for cholerage action represents a temperature-dependent transmembrane event, during which the toxin (or its active component) gains access to adenylate cyclase.Abbreviations used: ganglioside nomenclature according to Svennerholm [32] (see Table 1 for structures) cAMP adenosine 35-monophosphate - MIX 3-isobutyl-1-methylxanthine - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PBS phosphate-buffered saline (pH 7.4)  相似文献   

6.
W X Song  D A Rintoul 《Biochemistry》1989,28(10):4194-4200
N-cis-Parinaroyl ganglioside GM1 and N-trans-parinaroyl ganglioside GM1 were synthesized and characterized by HPLC, TLC, component analysis, absorbance spectroscopy, and proton NMR spectroscopy. Steady-state fluorescence anisotropy of the purified compounds, incorporated into phosphatidylcholine liposomes, was measured in the presence and absence of choleragen (cholera toxin) and choleragenoid (cholera toxin B subunit). In gel-phase liposomes, anisotropy measurements indicated that the motion of the parinaroyl ganglioside was not affected by addition of choleragen or choleragenoid. In fluid-phase liposomes, however, addition of toxin resulted in increased anisotropy (decreased rotational motion) of the fluorescent gangliosides. This decreased motion was not observed with other parinaroyl lipid probes, such as phosphatidylcholine, glucosylceramide, or free fatty acids, indicating that the effect was due to specific ganglioside/toxin interactions. Varying the amount of ganglioside or the amount of toxin suggested that the effect of toxin on probe motion was saturable at approximately 1 choleragen (or choleragenoid) molecule/5 ganglioside molecules. These results are consistent with previous hypotheses regarding the ganglioside/choleragen interaction and indicate that parinaroyl ganglioside probes will be useful in elucidation of the molecular details of this interaction.  相似文献   

7.
Summary Choleragen exerts its effects on cells through the activation of adenylate cyclase. The initial event appears to be the binding of the B subunit of the toxin to ganglioside GM1 on the cell surface, following which there is a delay prior to activation of adenylate cyclase. Patching and capping of the toxin on the cell surface, perhaps involved in the internalization of the enzymatically active subunit, may be occuring during this time. The activation of adenylate cyclase, which is catalyzed by the A1 peptide of choleragen, does not require the B subunit or ganglioside GM1. The A1 peptide catalyzes the transfer of ADP-ribose from NAD to an amino acid, probably arginine, in a 42 000 dalton membrane protein. This protein appears to be the GTP-binding component (or G/F factor) of the adenylate cyclase system and is cruical to the regulation of cyclase activity by hormones such as epinephrine. ADP-ribosylation of the G/F factor is enhanced by GTP and, in some systems, by a cytosolic factor. GTP is also required for stabilization and optimal catalytic function of the choleragen-activated cyclase. Calmodulin, a calcium-binding protein, is necessary for expression of catalytic activity of the toxin-activated adenylate cyclase in brain and other tissues. The ADP-ribosyltransferase activity required for activation of the cyclase is an intrinsic property of the A1 peptide of choleragen which is expressed only after the peptide is released from the holotoxin by reduction of a single disulfide bond. In the absence of cellular components, choleragen catalyzes the ADP-ribosylation of small guanidino compounds such as arginine as well as peptides and proteins that contain arginine. It is assumed, therefore, that the site of ADP-ribosylation in the natural acceptor protein is an arginine or similar amino acid. When guanidino compounds are not present as ADP-ribose acceptors, choleragen hydrolyzes NAD to ADP-ribose and nicotinamide at a considerably slower rate. E. coli heat-labile enterotoxin (LT) is very similar to choleragen in structure and function. It consists of two types of subunits, A and B, with sizes comparable to those of the A and B subunits of choleragen. Binding of LT to the cell surface is enhanced by prior incorporation of GM1 but not other gangliosides; the oligosaccharide of GM1 specifically interacts with LT and its B subunit. The A subunit of LT exhibits ADP-ribosyltransferase activity following activation by thiol to release the A1 peptide. The A subunit of LT can be isolated in an ‘unnicked’ form and thus requires, in addition to reduction by a thiol, proteolytic cleavage to generate the active A1 peptide. Like choleragen, LT uses guanidino compounds as model ADP-ribose acceptors and catalyzes the ADP-ribosylation of a 42 000 dalton protein in cell membrane prepatations. ADP-ribosyltransferases that use arginine as ADP-ribose acceptors are not restricted to bacterial systems; such an enzyme has been purified to apparent homogeneity (>500 000-fold) from turkey erythrocytes. Based on a subunit molecular weight of 28 000, its turnover number with arginine as the ADP-ribose acceptor is considerably higher than that of either toxin. Although with low molecular weight guanidino derivatives the substrate specificity of the enzyme is similar to that of choleragen, with protein substrates it clearly differs. The physiological role of the turkey erythrocyte transferase remains to be established.  相似文献   

8.
Choleragen stimulates steroid secretion and adenylate cyclase in three cell lines, adrenal tumor line (Y-1), a corticotropin-resistant mutant derived from Y-1 called OS-3, and a receptor-deficient Leydig tumor line (I-10). Sensitivity for half-maximal stimulation varies from 3 to 36 pM choleragen, the I-10 line being the most sensitive. Latency before the onset of steroidogenesis is longer in OS-3 and I-10 cells than in the Y-1 line. In both OS-3 and I-10 cells choleragen stimulates adenylate cyclase whether ITP or 5′-guanylylimidodiphosphate is the regulatory cofactor used. In addition to the responses of the receptor-deficient lines, choleragen does not during its latency, block the response to corticotropin in Y-1 cells; corticotropin does not block binding of 125I-labeled choleragen to Y-1 cells; gangliosides do not interfere with the corticotropin-induced stimulation of Y-1 cells.We conclude that the corticotropin and choleragen receptors are different.  相似文献   

9.
Choleragen increases cyclic AMP content of confluent human fibroblasts. Maximally effective concentrations of isoproterenol and prostaglandin E1 also induce large increases in cyclic AMP content of human fibroblasts and in confluent cultures the effect of prostaglandin E1 is much greater than that of isoproterenol. After incubation with choleragen, the increment in cyclic AMP produced by 2 μM isoproterenol is increased and approaches that produced by 5.6 μM prostaglandin E1. Although the concentration of isoproterenol which produces a maximal increase in cyclic AMP is similar in both control and choleragen-treated cells, lower concentrations of isoproterenol are more effective in the choleragen-treated cells. In choleragen-treated cells, although the response to 5.6 μM prostaglandin E1 is reduced by as much as 50%, the concentration of prostaglandin E1 required to induce a maximal increase in cyclic AMP is 110 that required in control cells. Thus the capacities of intact human fibroblasts to respond to isoproterenol and prostaglandin E1 can be altered independently during incubation of intact cells with choleragen. Differences in responsiveness to the two agonists were not demonstrable in adenylate cyclase preparations from control or choleragen-treated cells.In rat fat cells, the effects of choleragen on cyclic AMP content were much smaller than those in fibroblasts. In contrast to its effect on intact fibroblasts, choleragen treatment of rat fat cells did not alter the accumulation of cyclic AMP in response to a maximally effective concentration of isoproterenol. The responsiveness of adenylate cyclase preparations to isoproterenol was also not altered by exposure of fat cells to choleragen.  相似文献   

10.
Choleragen stimulates steroid secretion and adenylate cyclase in three cell lines, adrenal tumor line (Y-1), a corticotropin-resistant mutant derived from Y-1 called OS-3, and a receptor-deficient Leydig tumor line (I-10). Sensitivity for half-maximal stimulation varies from 3 to 36 pM choleragen, the I-10 line being the most sensitive. Latency before the onset of steroidogenesis is longer in OS-3 and I-10 cells than in the Y-1 line. In both OS-3 and I-10 cells choleragen stimulates adenylate cyclase whether ITP or 5'-guanylylimidodiphosphate is the regulatory cofactor used. In addition to the responses of the receptor-deficient lines, choleragen does not, during its latency, block the response to corticotropin in Y-1 cells; corticotropin does not block binding of 125I-labeled choleragen to Y-1 cells; gangliosides do not interfere with the corticotropin-induced stimulation of Y-1 cells. We conclude that the corticotropin and choleragen receptors are different.  相似文献   

11.
The B subunit of cholera toxin does not affect the growth of rat glioma C6 cells which are deficient of its receptor, ganglioside GM1. Insertion of ganglioside GM1 into the plasma membrane of C6 cells renders them susceptible to inhibition of DNA synthesis by the B subunit. Exposure of C6 cells to butyrate induces an elevation of ganglioside GM1 as measured by an increase in binding of iodinated cholera toxin and also results in an inhibition of DNA synthesis by the B subunit. The extent of inhibition of DNA synthesis correlated with the binding of B subunit and was independent of adenylate cyclase activation or increases in intracellular cAMP levels.  相似文献   

12.
CHOLERA TOXIN   总被引:2,自引:0,他引:2  
1. Death in several infectious diseases is caused by protein toxins secreted by invading bacteria. Cholera toxin is a simple protein secreted by Vibrio cholerae colonizing the gut; it is responsible for the massive diarrhoea that is cholera. 2. The primary action of cholera toxin is an activation of adenylate cyclase, an enzyme found on the inner membrane of eukaryotic cells that catalyses the conversion of ATP to cyclic AMP. Consequent increases in the intracellular concentration of cyclic AMP are responsible for other manifestations of cholera toxin including the diarrhoea. The toxin is active on almost all eukaryotic cells. 3. The toxin can be purified from culture filtrates of V. cholera. It has a molecular weight of 82000; and is composed of one subunit A (itself two polypeptide chains joined by a disulphide bond: AI (22000) and A2 (5000)) and five subunits B (11500). These can be separated in dissociating solvents such as detergents or 6 M guanidine hydrochloride. An amino-acid sequence of subunit B has been published. The five B subunits (sometimes found by themselves in the filtrate and known as ‘choleragenoid’) are probably arranged in a ring with the subunit A in the middle joined to them non-covalently by peptide A2. 4. The first action of cholera toxin on a cell is to bind to the membrane strongly and irreversibly. Several thousand molecules of toxin bind to each cell and the binding constants are of the order of 10-10 M. The binding is rapid, but is followed by a lag phase of about an hour before the intracellular cyclic AMP concentration begins to increase. 5. Ganglioside GM1, a complex amphiphilic lipid found in cell membranes, binds tightly to the toxin which shows an enzyme-like specificity for this particular ganglioside. Toxin that has already bound ganglioside can no longer bind to cells and is therefore inactive. This and other experiments using cells depleted of endogenous ganglioside suggest that ganglioside GM1 is the natural receptor of the toxin on the cell surface. The binding is followed by a lateral movement of the toxin-ganglioside complex in the cell surface forming a ‘cap’ at one pole of the cell. 6. The binding of ganglioside by toxin is a function exclusively of subunit B; Subunit A does not bind and can be eluted with 8 M urea from an insolubilized toxin-ganglioside complex. Subunit B is not by itself active, and so preincubation with B can protect cells or even whole gut from the action of toxin by occupying all the ganglioside binding sites. 7. Subunit A is responsible for activation of adenylate cyclase. Purified subunit A or just peptide AI is active by itself and this activity is not inhibited by ganglioside or by antisera to subunit B. In intact cells the activity is low and shows the characteristic lag phase but in lysed cells the subunit (or the whole toxin) is much more active and there is no lag phase. This suggests that the lag phase represents the time that subunit A takes to cross the cell membrane and get to its target. 8. Several cofactors are needed for toxin activity in lysed cells: NAD+, ATP, sulphydryl compounds and another unidentified cytoplasmic component. The activity of the cyclase is altered in a complex way generally rather similarly to the action of hormones such as adrenalin, but it is difficult to draw any general conclusions. 9. There are two chief theories of how cholera toxin acts. The first is that subunit A (or just peptide AI) enters the cell and there catalyses some reaction leading to activation of the cyclase. The cleavage of NAD+ into nicotinamide and adenosine diphosphoribose could be such a reaction; it is catalysed by high concentrations of cholera toxin. 10. The other theory is that part of the toxin binds directly to the adenylate cyclase or to some other molecule that can then interact with the cyclase, perhaps after the lateral movement of the toxin-ganglioside complex in the cell surface. This binding may be related to the known action of guanyl nucleotides on the cell surface. 11. The entry of peptide AI into the cell and its transport through the membrane is mediated by the binding of subunits B to the cell surface, perhaps just because the binding increases the local concentration of subunit A, or perhaps following specific conformational changes in the subunits and the formation of a tunnel of B subunits through the membrane. An experiment showing that the toxin remains active when the subunits are covalently bonded together suggests that peptide AI does not separate completely from the rest of the molecule. 12. There are several other proteins that resemble cholera toxin in structure and function. For example, glycoprotein hormones such as thyrotrophin also activate adenylate cyclase and have an apparently similar subunit structure with one type of subunit that binds to a ganglioside. There may also be analogies between the amino-acid sequences of toxin and hormones. 13. The enterotoxin made by some strains of Escherichia coli produces a similar diarrhoea to that of cholera. Several different toxic proteins have been prepared but they all seem to activate adenylate cyclase in the same sort of way as cholera toxin does and also to cross-react immunologically with it. The E. coli toxin also reacts with ganglioside G, but the reaction is weak and probably physiologically insignificant. Salmonella typhimurium secretes a similar toxin. 14. Tetanus toxin also reacts with a ganglioside receptor. This protein has two polypeptide chains of which only one reacts with the ganglioside; but the molecular activity is not yet known. 15. Diphtheria toxin has an A fragment that is directly responsible for the toxicity (by catalysing an NAD+ cleavage reaction leading to the total inhibition of protein synthesis) and a B fragment that gets the A fragment into the cells. This structure of active and binding components therefore seems to be common to many toxins. 16. The ability to produce toxin may confer some selective advantage on V. cholerae. The toxin may originate from accidental incorporation of DNA from an eukaryotic host, or alternatively from some material involved with the cyclic AMP metabolism of the bacterium.  相似文献   

13.
Heat labile enterotoxin from enterotoxigenic Escherichia coli is similar to cholera toxin (CT) and is a leading cause of diarrhea in developing countries. It consists of an enzymatically active A subunit (LTA) and a carrier pentameric B subunit (LTB). In the current study, we evaluated the importance of the N-terminal region of LTB by mutation analysis. Deletion of the glutamine (ΔQ3) residue and a substitution mutation E7G in the α1 helix region led to defects in LTB protein secretion. Deletion of the proline residue (ΔP2) caused a decrease in α helicity. The ΔP2 mutant affected GM1 ganglioside receptor binding activity without affecting LTB pentamer formation. Upon refolding/reassembly, the ΔP2 mutant showed defective biological activity. The single substitution mutation (E7D) strengthened the helix, imparting structural stability and thereby improved the GM1 ganglioside receptor binding activity. Our results demonstrate the important role of N-terminal α1 helix in maintaining the structural stability and the integrity of GM1 ganglioside receptor binding activity.  相似文献   

14.
The hormonal sensitivity of adenylate cyclase from a normal rat liver epithelial cell line (K16) and its chemically transformed derivative (W8) were compared. Intact normal rat liver cells had markedly increased cAMP levels after brief exposure to epinephrine, isoproterenol, norepinephrine or prostaglandin E1. In contrast, the cAMP levels of chemically transformed cells were relatively unaffected by these same compounds even after prolonged incubation. A comparison of broken cell adenylate cyclase activities revealed a decreased basal activity in the chemically transformed cells; the response to NaF was similar in the two cell lines, while the response to catecholamines and prostaglandins paralleled the intact cell studies. These data suggest that one reason for loss of adenylate cyclase hormonal responsiveness in chemically transformed rat liver epithelial cells may be a dysfunction or loss of hormone binding sites.  相似文献   

15.
R A Cohen  P Cuatrecasas 《Life sciences》1976,19(10):1537-1542
Stimulation of adenylate cyclase activity occurs in membranes prepared from toad erythrocytes preincubated briefly (at 37° or 4°) with ultraviolet light-inactivated Sendai virus. Stimulation occurs with as few as five virions per cell, and it is blocked by pretreating the virus with the membrane glycolipid, ganglioside GM1. Virus treatment also alters modulation of adenylate cyclase by hormones, nucleotides and sodium fluoride. Interactions of viral envelope antigens with plasma membrane components may thus elicit functional changes possibly important in the pathogenesis of viral infections.  相似文献   

16.
Choleragen, when bound to various cultured cells, resisted extraction by Triton X-100 under conditions which retained the cytoskeletal framework of the cells. This resistance (> 75% of the bound toxin) was observed in Friend erythroleukemic, mouse neuroblastoma N18 and NB41A and rat glioma C6 cells even though the different cells varied over 1000-fold in the number of toxin receptors. The extent of extraction did not depend on whether the cells were in monolayer culture or in suspension or whether choleragen was bound at 0 or 37°C. A similar resistance to extraction was also observed in membranes isolated from toxin-treated cells. Using more drastic conditions and other non-ionic detergents, 90% of the bound choleragen was solubilized from cells and membranes. When rat glioma C6 cells, which bind only small amounts of choleragen, were incubated with the ganglioside GM1, toxin binding was increased and the bound toxin was also resistant to extraction. When these cells were incubated with [3H]GM1, up to 70% of the cell-associated GM1 was extracted under the mild conditions. When the GM1-labeled cells were incubated with choleragen or its B (binding) component, there was a significant reduction in the solubilization of GM1. Similar results were obtained with isolated membranes. When choleragen-receptor complexes were isolated from N18 cells labeled with [3H]galactose by immunoadsorption, only labeled GM1 was specifically recovered. These results suggest that it is the choleragen-ganglioside complex that is resistant to detergent extraction.  相似文献   

17.
Role of membrane gangliosides in the binding and action of bacterial toxins   总被引:31,自引:0,他引:31  
Summary Gangliosides are complex glycosphingolipids that contain from one to several residues of sialic acid. They are present in the plasma membrane of vertebrate cells with their oligosaccharide chains exposed to the external environment. They have been implicated as cell surface receptors and several bacterial toxins have been shown to interact with them. Cholera toxin, which mediates its effects on cells by activating adenylate cyclase, bind with high affinity and specificity to ganglioside GM1. Toxin-resistant cells which lack GM1 can be sensitized to cholera toxin by treating them with GM1. Cholera toxin specifically protects GM1 from cell surface labeling procedures and only GM1 is recovered when toxin-receptor complexes are isolated by immunoadsorption. These results clearly demonstrate that GM1 is the specific and only receptor for cholera toxin. Although cholera toxin binds to GM1 on the external side of the plasma membrane, it activates adenylate cyclase on the cytoplasmic side of the membrane by ADP-ribosylation of the regulatory component of the cyclase. GM1 in addition to functioning as a binding site for the toxin appears to facilitate its transmembrane movement. The heat-labile enterotoxin ofE. coli is very similar to cholera toxin in both form and function and can also use GM1 as a cell surface receptor. The potent neurotoxin, tetanus toxin, has a high affinity for gangliosides GD1b and GT1b and binds to neurons which contain these gangliosides. It is not yet clear whether these gangliosides are the physiological receptors for tetanus toxin. By applying the techniques that established GM1 as the receptor for cholera toxin, the role of gangliosides as receptors for tetanus toxin as well as physiological effectors may be elucidated.  相似文献   

18.
The regulation of adenylate cyclase has been analyzed in normal rat thyroid cells as well as in the same cells transformed by the v-ras-k oncogene. In both cell types the adenylate cyclase complex consists of the two GTP-binding proteins, Gi and Gs, as demonstrated by the specific ADP-ribosylation induced by pertussis and cholera toxin, respectively. The response of adenylate cyclase of the transformed cells to forskolin, pertussis toxin and cholera toxin is attenuated with respect to the control cell line. The thyrotropic hormone (TSH), that acts on normal thyroid cells in culture as a growth factor by stimulating the adenylate cyclase activity, is not able to induce DNA synthesis nor does it stimulate adenylate cyclase in v-ras-k transformed cells.  相似文献   

19.
3T3C2 mouse fibroblasts rendered permeable to (α?32P)NAD+ show cholera toxin-dependent labeling of a 45,000 m.w. protein and of a doublet of polypeptides around 52,000 m.w. These same bands are ADP-ribosylated in broken cells. Membranes prepared from pigeon erythrocytes pretreated with choleragen show a decrease in subsequent cholera toxin-specific ADP-ribosylation of a 43,000 m.w. polypeptide. Both whole cell and broken cell adenylate cyclase activation and toxin-specific ADP-ribosylation are reversed specifically by low pH and high concentrations of toxin and nicotinamide in all systems. Thus ADP-ribosylation appears to be relevant to the molecular action of choleragen in whole cells as well as in broken cells.  相似文献   

20.
Coligenoid, composed of the B subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli, was separated into monomers in the presence of 2% propionic acid containing 6 M urea (pH 3.8). Monomers equilibrated against 0.75% or 0.5% propionic acid containing 3 M urea (pH 3.8) did not reassemble into coligenoid. Complexes of GM1 ganglioside and coligenoid in these buffers were detected by SDS-polyacrylamide gel electrophoresis, but those of the GM1 ganglioside and monomers were not. The binding ability of monomer to GM1 ganglioside in these buffers was about 1% of that of normal coligenoid by GM1-enzyme-linked immunosorbent assay. Moreover, monomers in these buffers reassembled into coligenoid by buffering against original TEAN buffer, and the binding ability of the resulting coligenoid to GM1 ganglioside was identical to that of native coligenoid. These data suggest that although coligenoid formation is important for the receptor binding of the B subunit, little binding ability to GM1 ganglioside remains in monomer of the B subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号