首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
Nitrosylhemoglobin (HbFe(II)NO) has been detected in vivo, and its role in NO transport and preservation has been discussed. To gain insight into the potential role of HbFe(II)NO, we performed in vitro experiments to determine the effect of oxygenated red blood cells (RBCs) on the dissociation of cell-free HbFe(II)NO, using carboxyhemoglobin (HbFe(II)CO) as a comparison. Results show that the apparent half-life of the cell-free HbFe(II)CO was reduced significantly in the presence of RBCs at 1% hematocrit. In contrast, RBC did not change the apparent half-life of extracellular HbFe(II)NO, but caused a shift in the HbFe(II)NO dissociation product from methemoglobin (metHbFe(III)) to oxyhemoglobin (HbFe(II)O(2)). Extracellular hemoglobin was able to extract CO from HbFe(II)CO-containing RBC, but not NO from HbFe(II)NO-containing RBC. Although these results appear to suggest some unusual interactions between HbFe(II)NO and RBC, the data are explainable by simple HbFe(II)NO dissociation and hemoglobin oxidation with known rate constants. A kinetic model consisting of these reactions shows that (i) deoxyhemoglobin is an intermediate in the reaction of HbFe(II)NO oxidation to metHbFe(III), (ii) the rate-limiting step of HbFe(II)NO decay is the dissociation of NO from HbFe(II)NO, (iii) the magnitude of NO diffusion rate constant into RBC is estimated to be approximately 10(4)M(-1)s(-1), consistent with previous results determined from a competition assay, and (iv) no additional chemical reactions are required to explain these data.  相似文献   

2.
Mycobacterium leprae truncated hemoglobin O (trHbO) protects from nitrosative stress and sustains mycobacterial respiration. Here, kinetics of M. leprae trHbO(II)-NO denitrosylation and of O(2)-mediated oxidation of M. leprae trHbO(II)-NO are reported. Values of the first-order rate constant for *NO dissociation from M. leprae trHbO(II)-NO (k(off)) and of the first-order rate constant for O(2)-mediated oxidation of M. leprae trHbO(II)-NO (h) are 1.3 x 10(-4) s(-1) and 1.2 x 10(-4) s(-1), respectively. The coincidence of values of k(off) and h suggests that O(2)-mediated oxidation of M. leprae trHbO(II)-NO occurs with a reaction mechanism in which *NO, that is initially bound to heme(II), is displaced by O(2) but may stay trapped in a protein cavity(ies) close to heme(II). Next, M. leprae trHbO(II)-O(2) reacts with *NO giving the transient Fe(III)-OONO species preceding the formation of the final product M. leprae trHbO(III). *NO dissociation from heme(II)-NO represents the rate limiting step for O(2)-mediated oxidation of M. leprae trHbO(II)-NO.  相似文献   

3.
NO reactions with hemoglobin (Hb) likely play a role in blood pressure regulation. For example, NO exchange between Hb and S-nitrosoglutathione (GSNO) has been reported in vitro. Here we examine the reaction between GSNO and deoxyHb (HbFe(II)) in the presence of both Cu(I) (2,9-dimethyl-1, 10-phenanthroline (neocuproine)) and Cu(II) (diethylenetriamine-N,N,N',N",N"-pentaacetic acid) chelators using a copper-depleted Hb solution. Spectroscopic analysis of deoxyHb (HbFe(II))/GSNO incubates shows prompt formation (<5 min) of approximately 100% heme-nitrosylated Hb (HbFe(II)NO) in the absence of chelators, 46% in the presence of diethylenetriamine-N,N,N',N",N"-pentaacetic acid, and 25% in the presence of neocuproine. Negligible (<2%) HbFe(II)NO was detected when neocuproine was added to copper-depleted HbFe(II)/GSNO incubates. Thus, HbFe(II)NO formation via a mechanism involving free NO generated by Cu(I) catalysis of GSNO breakdown is proposed. GSH is a source of reducing equivalents because extensive GSSG was detected in HbFe(II)/GSNO incubates in the absence of metal chelators. No S-nitrosation of HbFe(II) was detected under any conditions. In contrast, the NO released from GSNO is directed to Cysbeta(93) of oxyHb in the absence of chelators, but only metHb formation is observed in the presence of chelators. Our findings reveal that the reactions of GSNO and Hb are controlled by copper and that metal chelators do not fully inhibit NO release from GSNO in Hb-containing solutions.  相似文献   

4.
Hemoglobin released in the circulation from ruptured red blood cells can be oxidized by hydrogen peroxide or peroxynitrite to generate the highly oxidizing iron(IV)oxo species HbFe(IV)z=O. Nitrogen monoxide, produced in large amounts by activated inducible nitric oxide synthase, can have indirect cytotoxic effects, mainly through the generation of peroxynitrite from its very fast reaction with superoxide. In the present work we have determined the rate constant for the reaction of HbFe(IV)z=O with NO(*), 2.4 x 10(7) M(-1)s(-1) at pH 7.0 and 20 degrees C. The reaction proceeds via the intermediate HbFe(III)ONO, which then dissociates to metHb and nitrite. As these products are not oxidizing and because of its large rate, the reaction of HbFe(IV)z=O with NO(*) may be important to remove the high valent form of hemoglobin, which has been proposed to be at least in part responsible for oxidative lesions. In addition, we have determined that the rate constant for the reaction of HbFe(IV)z=O with nitrite is significantly lower (7.5 x 10(2) M(-1)s(-1) at pH 7.0 and 20 degrees C), but increases with decreasing pH (1.8 x 10(3) M(-1)s(-1) at pH 6.4 and 20 degrees C). Thus, under acidic conditions as found in ischemic tissues, this reaction may also have a physiological relevance.  相似文献   

5.
Elucidating the reaction of nitric oxide (NO) with oxyhemoglobin [HbFe(II)O2] is critical to understanding the metabolic fate of NO in the vasculature. At low concentrations of NO, methemoglobin [HbFe(III)] is the only detectable product from this reaction; however, locally high concentrations of NO have been demonstrated to result in some iron-nitrosylhemoglobin [HbFe(II)NO] and S-nitrosohemoglobin (SNO-Hb) formation. Reductive nitrosylation through a HbFe(III) intermediate was proposed as a viable pathway under such conditions. Here, we explore another potential mechanism based on mixed valenced Hb tetramers. The oxidation of one or two heme Fe(II) in the R-state HbFe(II)O2 has been observed to lower the oxygen affinity of the remaining heme groups, thus creating the possibility of oxygen release and NO binding at the heme Fe(II) sites. This mixed valenced hypothesis requires an allosteric transition of the Hb tetramer. Hence, this hypothesis can account for HbFe(II)NO formation, but not SNO-Hb formation. Here, we demonstrate that cyanide attenuated the formation of SNO-Hb by 30-40% when a saturated NO bolus was added to 0.1-1.0 mM HbFe(II)O2 solutions. In addition, HbFe(II)NO formation under such inhomogeneous conditions does not require allostericity. Therefore, we concluded that the mixed valenced theory does not play a major role under these conditions, and reductive nitrosylation accounts for a significant fraction of the HbFe(II)NO formed and approximately 30-40% of SNO-Hb. The remaining SNO-Hb is likely formed from NO oxidation products.  相似文献   

6.
Reaction between NO(*) and manganese tetrakis(N-ethylpyridinium-2-yl)porphyrin (Mn(III)TE-2-PyP(5+)) was investigated at 25 degrees C. At high excess of NO(*) (1.5 mM) the reaction with the oxidized, air-stable form Mn(III)TE-2-PyP(5+) (5 microM), proceeds very slowly (t(1/2) congruent with 60 min). The presence of excess ascorbate (1 mM) produces the reduced form, Mn(II)TE-2-PyP(4+), which reacts with NO(*) stoichiometrically and in the time of mixing (k congruent with 1 x 10(6) M(-1) s(-1)). The high rate of formation and the stability of the product, Mn(II)TE-2-PyP(NO)(4+) (?Mn(NO)?(6)), make the reaction outcompete the reaction of NO(*) with O(2). Our in vitro measurements show a linear absorbance response upon addition of NO to a PBS, pH 7.4, solution containing an excess of ascorbate over Mn(III)TE-2-PyP(5+). Thus, the observed interactions can be the basis of a convenient and sensitive spectrophotometric assay for NO(*). Also, it may have important implications for the in vivo behavior of Mn(III)TE-2-PyP(5+) which is currently exploited as a possible therapeutic agent for various oxygen-radical related disorders.  相似文献   

7.
Hemopexin (HPX), serving as scavenger and transporter of toxic plasma heme, has been postulated to play a key role in the homeostasis of NO. Here, kinetics of HPX-heme(II) nitrosylation and O2-mediated oxidation of HPX-heme(II)-NO are reported. NO reacts reversibly with HPX-heme(II) yielding HPX-heme(II)-NO, according to the minimum reaction scheme: HPX-heme(II)+NO kon<-->koff HPX-heme(II)-NO values of kon, koff, and K (=kon/koff) are (6.3+/-0.3)x10(3)M-1s-1, (9.1+/-0.4)x10(-4)s-1, and (6.9+/-0.6)x10(6)M-1, respectively, at pH 7.0 and 10.0 degrees C. O2 reacts with HPX-heme(II)-NO yielding HPX-heme(III) and NO3-, by means of the ferric heme-bound peroxynitrite intermediate (HPX-heme(III)-N(O)OO), according to the minimum reaction scheme: HPX-heme(II)-NO+O2 hon<--> HPX-heme(III)-N(O)OO l-->HPX-heme(III)+NO3- the backward reaction rate is negligible. Values of hon and l are (2.4+/-0.3)x10(1)M-1s-1 and (1.4+/-0.2)x10(-3)s-1, respectively, at pH 7.0 and 10.0 degrees C. The decay of HPX-heme(III)-N(O)OO (i.e., l) is rate limiting. The HPX-heme(III)-N(O)OO intermediate has been characterized by optical absorption spectroscopy in the Soret region (lambdamax=409 nm and epsilon409=1.51x10(5)M-1cm-1). These results, representing the first kinetic evidence for HPX-heme(II) nitrosylation and O2-mediated oxidation of HPX-heme(II)-NO, might be predictive of transient (pseudo-enzymatic) function(s) of heme carriers.  相似文献   

8.
Boccini F  Herold S 《Biochemistry》2004,43(51):16393-16404
The strong oxidizing and nitrating agent peroxynitrite has been shown to diffuse into erythrocytes and oxidize oxyhemoglobin (oxyHb) to metHb. Because the value of the second-order rate constant for this reaction is on the order of 10(4) M(-)(1) s(-)(1) and the oxyHb concentration is about 20 mM (expressed per heme), this process is rather fast and oxyHb is considered a sink for peroxynitrite. In this work, we showed that the reaction of oxyHb with peroxynitrite, both in the presence and absence of CO(2), proceeds via the formation of oxoiron(iv)hemoglobin (ferrylHb), which in a second step is reduced to metHb and nitrate by its reaction with NO(2)(*). In the presence of physiological relevant amounts of CO(2), ferrylHb is generated by the reaction of NO(2)(*) with the coordinated superoxide of oxyHb (HbFe(III)O(2)(*)(-)). This reaction proceeds via formation of a peroxynitrato-metHb complex (HbFe(III)OONO(2)), which decomposes to generate the one-electron oxidized form of ferrylHb, the oxoiron(iv) form of hemoglobin with a radical localized on the globin. CO(3)(*)(-), the second radical formed from the reaction of peroxynitrite with CO(2), is also scavenged efficiently by oxyHb, in a reaction that finally leads to metHb production. Taken together, our results indicate that oxyHb not only scavenges peroxynitrite but also the radicals produced by its decomposition.  相似文献   

9.
Heo J  Campbell SL 《Biochemistry》2006,45(7):2200-2210
Ras GTPases cycle between inactive GDP-bound and active GTP-bound states to modulate a diverse array of processes involved in cellular growth control. We have previously shown that both NO/O(2) (via nitrogen dioxide, (*)NO(2)) and superoxide radical anion (O(2)(*)(-)) promote Ras guanine nucleotide dissociation. We now show that hydrogen peroxide in the presence of transition metals (i.e., H(2)O(2)/transition metals) and peroxynitrite also trigger radical-based Ras guanine nucleotide dissociation. The primary redox-active reaction species derived from H(2)O(2)/transition metals and peroxynitrite is O(2)(*)(-) and (*)NO(2), respectively. A small fraction of hydroxyl radical (OH(*)) is also present in both. We also show that both carbonate radical (CO(3)(*)(-)) and (*)NO(2), derived from the mixture of peroxynitrite and bicarbonate, facilitate Ras guanine nucleotide dissociation. We further demonstrate that NO/O(2) and O(2)(*)(-) promote Ras GDP exchange with GTP in the presence of a radical-quenching agent, ascorbate, or NO, and generation of Ras-GTP promotes high-affinity binding of the Ras-binding domain of Raf-1, a downstream effector of Ras. S-Nitrosylated Ras (Ras-SNO) can be formed when NO serves as a radical-quenching agent, and hydroxyl radical but not (*)NO(2) or O(2)(*)(-) can further react with Ras-SNO to modulate Ras activity in vitro. However, given the lack of redox specificity associated with the high redox potential of OH(*), it is unclear whether this reaction occurs under physiological conditions.  相似文献   

10.
To elucidate potential mechanisms of S-nitrosothiol formation in vivo, we studied nitrosation of GSH and albumin by nitric oxide ((*)NO), peroxynitrite, and (*)NO/O(2)(*)(-). In the presence of O(2), (*)NO yielded 20% of S-nitrosoglutathione (GSNO) at pH 7.5. Ascorbate and the spin trap 4-hydroxy-[2,2,4,4-tetramethyl-piperidine-1-oxyl] (TEMPOL) inhibited GSNO formation by 67%. Electron paramagnetic resonance spectroscopy with 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) demonstrated intermediate formation of glutathionyl radicals, suggesting that GSNO formation by (*)NO/O(2) is predominantly mediated by (*)NO(2). Peroxynitrite-triggered GSNO formation (0.06% yield) was stimulated 10- and 2-fold by ascorbate and TEMPOL, respectively. Co-generation of (*)NO and O(2)(*)(-) at equal fluxes yielded less GSNO than (*)NO alone, but was 100-fold more efficient (8% yield) than peroxynitrite. Moreover, in contrast to the reaction of peroxynitrite, GSNO formation by (*)NO/O(2)(*)(-) was inhibited by ascorbate. Similar results were obtained with albumin instead of GSH. We propose that sulfhydryl compounds react with O(2)(*)(-) to initiate a chain reaction that forms radical intermediates which combine with (*)NO to yield GSNO. In RAW 264.7 macrophages, S-nitrosothiol formation by (*)NO/O(2) and (*)NO/O(2)(*)(-) occurred with relative efficiencies comparable to those in solution. Our results indicate that concerted generation of (*)NO and O(2)(*)(-) may essentially contribute to nitrosative stress in inflammatory diseases.  相似文献   

11.
Nagababu E  Ramasamy S  Rifkind JM 《Biochemistry》2007,46(41):11650-11659
The reaction of nitrite with deoxyhemoglobin (deoxyHb) results in the reduction of nitrite to NO, which binds unreacted deoxyHb forming Fe(II)-nitrosylhemoglobin (Hb(II)NO). The tight binding of NO to deoxyHb is, however, inconsistent with reports implicating this reaction with hypoxic vasodilation. This dilemma is resolved by the demonstration that metastable intermediates are formed in the course of the reaction of nitrite with deoxyHb. The level of intermediates is quantitated by the excess deoxyHb consumed over the concentrations of the final products formed. The dominant intermediate has a spectrum that does not correspond to that of Hb(III)NO formed when NO reacts with methemoglobin (MetHb), but is similar to metHb resulting in the spectroscopic determinations of elevated levels of metHb. It is a delocalized species involving the heme iron, the NO, and perhaps the beta-93 thiol. The putative role for red cell reacted nitrite on vasodilation is associated with reactions involving the intermediate. (1) The intermediate is less stable with a 10-fold excess of nitrite and is not detected with a 100-fold excess of nitrite. This observation is attributed to the reaction of nitrite with the intermediate producing N2O3. (2) The release of NO quantitated by the formation of Hb(II)NO is regulated by changes in the distal heme pocket as shown by the 4.5-fold decrease in the rate constant in the presence of 2,3-diphosphoglycerate. The regulated release of NO or N2O3 as well as the formation of the S-nitroso derivative of hemoglobin, which has also been reported to be formed from the intermediates generated during nitrite reduction, should be associated with any hypoxic vasodilation attributed to the RBC.  相似文献   

12.
Nitrotyrosine is widely used as a marker of post-translational modification by the nitric oxide ((.)NO, nitrogen monoxide)-derived oxidant peroxynitrite (ONOO(-)). However, since the discovery that myeloperoxidase (MPO) and eosinophil peroxidase (EPO) can generate nitrotyrosine via oxidation of nitrite (NO(2)(-)), several questions have arisen. First, the relative contribution of peroxidases to nitrotyrosine formation in vivo is unknown. Further, although evidence suggests that the one-electron oxidation product, nitrogen dioxide ((*)NO(2)), is the primary species formed, neither a direct demonstration that peroxidases form this gas nor studies designed to test for the possible concomitant formation of the two-electron oxidation product, ONOO(-), have been reported. Using multiple distinct models of acute inflammation with EPO- and MPO-knockout mice, we now demonstrate that leukocyte peroxidases participate in nitrotyrosine formation in vivo. In some models, MPO and EPO played a dominant role, accounting for the majority of nitrotyrosine formed. However, in other leukocyte-rich acute inflammatory models, no contribution for either MPO or EPO to nitrotyrosine formation could be demonstrated. Head-space gas analysis of helium-swept reaction mixtures provides direct evidence that leukocyte peroxidases catalytically generate (*)NO(2) formation using H(2)O(2) and NO(2)(-) as substrates. However, formation of an additional oxidant was suggested since both enzymes promote NO(2)(-)-dependent hydroxylation of targets under acidic conditions, a chemical reactivity shared with ONOO(-) but not (*)NO(2). Collectively, our results demonstrate that: 1) MPO and EPO contribute to tyrosine nitration in vivo; 2) the major reactive nitrogen species formed by leukocyte peroxidase-catalyzed oxidation of NO(2)(-) is the one-electron oxidation product, (*)NO(2); 3) as a minor reaction, peroxidases may also catalyze the two-electron oxidation of NO(2)(-), producing a ONOO(-)-like product. We speculate that the latter reaction generates a labile Fe-ONOO complex, which may be released following protonation under acidic conditions such as might exist at sites of inflammation.  相似文献   

13.
Nitrite is present in red blood cells (RBCs) and is proposed to be the largest intravascular storage pool of vasoactive NO. The mechanism by which nitrite exerts NO vasoactivity remains unclear but deoxyHb exhibits nitrite reductase activity. NitrosylHb (HbFe(II)NO) is formed on nitrite reduction by excess deoxyHb, and S-nitrosated Hb (HbSNO) has also been detected in nitrite/deoxyHb incubations. We report data consistent with efficient HbSNO generation from a nitrosylHb intermediate on oxygenation of anaerobic deoxyHb incubations containing physiologically revelant levels of nitrite, whereas previously a labile nitrosylmetHb (HbFe(III)NO) transient was proposed. The HbSNO yield as a function of the initial nitrite concentration varies with the nitrite/deoxyHb ratio, the incubation time, the concentration of added metHb (a nitrite trap), and the concentration of added cyanide (a strong metHb ligand). Our results reveal that metHb strongly attenuates HbSNO formation, which suggests that the met protein may play a regulatory role by limiting the amount of free (or non-Hb-bound) nitrite within RBCs to prevent hypotension.  相似文献   

14.
Human serum albumin (SA) is best known for its extraordinary ligand-binding capacity. Here, kinetics of peroxynitrite-mediated oxidation of SA-heme(II)-NO is reported. Peroxynitrite reacts with SA-heme(II)-NO leading to SA-heme(III) and ()NO by way of the transient SA-heme(III)-NO species. Abacavir facilitates peroxynitrite-mediated oxidation of SA-heme(II)-NO, in the absence and presence of CO2. Values of the second order rate constant for peroxynitrite-mediated oxidation of SA-heme(II)-NO are (6.5+/-0.9) x 10(3) M(-1) s(-1) in the absence of CO2 and abacavir, (1.3+/-0.2) x 10(5) M(-1) s(-1) in the presence of CO2, (2.2+/-0.2) x 10(4) M(-1) s(-1) in the presence of abacavir, and (3.6+/-0.3) x 10(5) M(-1) s(-1) in the presence of both CO2 and abacavir. The value of the first-order rate constant for *NO dissociation from the SA-heme(III)-NO complex (=(1.8+/-0.3) x 10(-1) s(-1)) is CO2- and abacavir-independent, representing the rate-limiting step. Present data represent the first evidence for the allosteric modulation of SA-heme reactivity by heterotropic interaction(s).  相似文献   

15.
Dietary (-)-epicatechin is known to improve bioactivity of (*)NO in arterial endothelium of humans, but the mode of action is unclear. We used the fluorophore 4,5-diaminofluorescein diacetate to visualize the (*)NO level in living human umbilical vein endothelial cells (HUVEC). Untreated cells showed only a weak signal, whereas pretreatment with (-)-epicatechin (10 microM) or apocynin (100 microM) elevated the (*)NO level. The effects were more pronounced when the cells were treated with angiotensin II with or without preloading of the cells with (*)NO via PAPA-NONOate. While (-)-epicatechin scavenged O2(*-), its O-methylated metabolites prevented O2(*-) generation through inhibition of endothelial NADPH oxidase activity, even more strongly than apocynin. From the effect of 3,5-dinitrocatechol, an inhibitor of catechol-O-methyltransferase (COMT), on HUVEC it is concluded that (-)-epicatechin serves as 'prodrug' for conversion to apocynin-like NADPH oxidase inhibitors. These data indicate an (*)NO-preserving effect of (-)-epicatechin via suppression of O2(*-)-mediated loss of (*)NO.  相似文献   

16.
Oxidation of the anticancer anthracyclines doxorubicin (DXR) and daunorubicin (DNR) by lactoperoxidase(LPO)/H(2)O(2) and horseradish peroxidase(HRP)/H(2)O(2) systems in the presence and absence of nitrite (NO(2)(-)) has been investigated using spectrophotometric and EPR techniques. We report that LPO/H(2)O(2)/NO(2)(-) causes rapid and irreversible loss of anthracyclines' absorption bands, suggesting oxidative degradation of their chromophores. Both the initial rate and the extent of oxidation are dependent on both NO(2)(-) concentration and pH. The initial rate decreases when the pH is changed from 7 to 5, and the reaction virtually stops at pH 5. Oxidation of a model hydroquinone compound, 2,5-di-tert-butylhydroquinone, by LPO/H(2)O(2) is also dependent on NO(2)(-); however, in contrast to DNR and DXR, this oxidation is most efficient at pH 5, indicating that LPO/H(2)O(2)/NO(2)(-) is capable of efficiently oxidizing simple hydroquinones even in the neutral form. Oxidation of anthracyclines by HRP/H(2)O(2)/NO(2)(-) is substantially less efficient relative to that by LPO/H(2)O(2)/NO(2)(-) at either pH 5 or pH 7, most likely due to the lower rate of NO(2)(-) metabolism by HRP/H(2)O(2). EPR measurements show that interaction of anthracyclines and 2,5-di-tert-butylhydroquinone with LPO/H(2)O(2)/NO(2)(-) generates the corresponding semiquinone radicals presumably via one-electron oxidation of their hydroquinone moieties. The possible role of the (*)NO(2) radical, a putative LPO metabolite of NO(2)(-), in oxidation of these compounds is discussed. Because in vivo the anthracyclines may co-localize with peroxidases, H(2)O(2), and NO(2)(-) in tissues, their oxidation via the proposed mechanism is likely. These observations reveal a novel, peroxidase- and nitrite-dependent mechanism for the oxidative transformation of the anticancer anthracyclines, which may be pertinent to their biological activities in vivo.  相似文献   

17.
The [Ru(II)(Hedta)NO(+)] complex is a diamagnetic species crystallizing in a distorted octahedral geometry, with the Ru-N(O) length 1.756(4) A and the RuNO angle 172.3(4) degrees . The complex contains one protonated carboxylate (pK(a)=2.7+/-0.1). The [Ru(II)(Hedta)NO(+)] complex undergoes a nitrosyl-centered one-electron reduction (chemical or electrochemical), with E(NO+/NO)=-0.31 V vs SCE (I=0.2 M, pH 1), yielding [Ru(II)(Hedta)NO](-), which aquates slowly: k(-NO)=2.1+/-0.4x10(-3) s(-1) (pH 1.0, I=0.2 M, CF(3)COOH/NaCF(3)COO, 25 degrees C). At pHs>12, the predominant species, [Ru(II)(edta)NO](-), reacts according to [Ru(II)(edta)NO](-)+2OH(-)-->[Ru(II)(edta)NO(2)](3-), with K(eq)=1.0+/-0.4 x 10(3) M(-2) (I=1.0 M, NaCl; T=25.0+/-0.1 degrees C). The rate-law is first order in each of the reactants for most reaction conditions, with k(OH(-))=4.35+/-0.02 M(-1)s(-1) (25.0 degrees C), assignable mechanistically to the elementary step comprising the attack of one OH(-) on [Ru(II)(edta)NO](-), with subsequent fast deprotonation of the [Ru(II)(edta)NO(2)H](2-) intermediate. The activation parameters were DeltaH(#)=60+/-1 kJ/mol, DeltaS(#)=-31+/-3 J/Kmol, consistent with a nucleophilic addition process between likely charged ions. In the toxicity up-and-down tests performed with Swiss mice, no death was observed in all the doses administered (3-9.08 x 10(-5) mol/kg). The biodistribution tests performed with Wistar male rats showed metal in the liver, kidney, urine and plasma. Eight hours after the injection no metal was detected in the samples. The vasodilator effect of [Ru(II)(edta)NO](-) was studied in aortic rings without endothelium, and was compared with sodium nitroprusside (SNP). The times of maximal effects of [Ru(II)(edta)NO](-) and SNP were 2 h and 12 min, respectively, suggesting that [Ru(II)(edta)NO](-) releases NO slowly to the medium in comparison with SNP.  相似文献   

18.
19.
Hemopexin (HPX), which serves as a scavenger and transporter of toxic plasma heme, has been postulated to play a key role in the homeostasis of NO. In fact, HPX-heme(II) reversibly binds NO and facilitates NO scavenging by O(2). HPX-heme is formed by two four-bladed beta-propeller domains. The heme is bound between the two beta-propeller domains, residues His213 and His266 coordinate the heme iron atom. HPX-heme displays structural features of heme-proteins endowed with (pseudo-)enzymatic activities. In this study, the kinetics of rabbit HPX-heme(III) reductive nitrosylation and peroxynitrite-mediated oxidation of HPX-heme(II)-NO are reported. In the presence of excess NO, HPX-heme(III) is converted to HPX-heme(II)-NO by reductive nitrosylation. The second-order rate constant for HPX-heme(III) reductive nitrosylation is (1.3 +/- 0.1) x 10(1) m(-1).s(-1), at pH 7.0 and 10.0 degrees C. NO binding to HPX-heme(III) is rate limiting. In the absence and presence of CO2 (1.2 x 10(-3) m), excess peroxynitrite reacts with HPX-heme(II)-NO (2.6 x 10(-6) m) leading to HPX-heme(III) and NO, via the transient HPX-heme(III)-NO species. Values of the second-order rate constant for HPX-heme(III)-NO formation are (8.6 +/- 0.8) x 10(4) and (1.2 +/- 0.2) x 10(6) m(-1).s(-1) in the absence and presence of CO2, respectively, at pH 7.0 and 10.0 degrees C. The CO2-independent value of the first-order rate constant for HPX-heme(III)-NO denitrosylation is (4.3 +/- 0.4) x 10(-1) s(-1), at pH 7.0 and 10.0 degrees C. HPX-heme(III)-NO denitrosylation is rate limiting. HPX-heme(II)-NO appears to act as an efficient scavenger of peroxynitrite and of strong oxidants and nitrating species following the reaction of peroxynitrite with CO2 (e.g. ONOOC(O)O-, CO3-, and NO2).  相似文献   

20.
Effects of nitrite and ammonium on methane-dependent denitrification   总被引:1,自引:0,他引:1  
For effective application of methane-dependent denitrification (MDD) in the treatment of wastewater containing NO(2)(-) or NH(4)(+), the effect of these inorganic nitrogen compounds on MDD activity needs to be clarified. The MDD activity of sludge acclimatized with CH(4) and O(2) was determined with mineral media of different nitrogen-compound compositions in the presence of 0.21 atm CH(4) and 0.20 atm O(2). Incubations with media containing only NO(2)(-) or two of the three inorganic nitrogen compounds (NO(3)(-)+NO(2)(-), NO(2)(-)+NH(4)(+) or NH(4)(+)+NO(3)(-)) resulted in MDD activity equal to or higher than that with media containing only NO(3)(-). However, there was no MDD activity in media containing NO(2)(-) at 10 degrees C, probably because of serious inhibition of NO(2)(-) on methane oxidation. MDD occurred in media containing only NH(4)(+), although the total nitrogen removal efficiency was very low. These results show that NO(2)(-) and NH(4)(+), in the presence of NO(x)(-), do not inhibit but rather promote MDD. Consequently, NH(4)(+) does not need to be completely oxidized to NO(3)(-) in the nitrification reactor before MDD. However, under psychrophilic conditions, NO(2)(-) seriously inhibited MDD. Therefore, the nitrification reactor must not discharge effluent containing NO(2)(-) under psychrophilic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号