首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intercellular transport of tobacco mosaic virus (TMV) RNA involves the accumulation of virus-encoded movement protein (MP) in plasmodesmata (Pd), in endoplasmic reticulum (ER)-derived inclusion bodies, and on microtubules. The functional significance of these interactions in viral RNA (vRNA) movement was tested in planta and in protoplasts with TMV derivatives expressing N- and C-terminal deletion mutants of MP fused to the green fluorescent protein. Deletion of 55 amino acids from the C terminus of MP did not interfere with the vRNA transport function of MP:GFP but abolished its accumulation in inclusion bodies, indicating that accumulation of MP at these ER-derived sites is not a requirement for function in vRNA intercellular movement. Deletion of 66 amino acids from the C terminus of MP inactivated the protein, and viral infection occurred only upon complementation in plants transgenic for MP. The functional deficiency of the mutant protein correlated with its inability to associate with microtubules and, independently, with its absence from Pd at the leading edge of infection. Inactivation of MP by N-terminal deletions was correlated with the inability of the protein to target Pd throughout the infection site, whereas its associations with microtubules and inclusion bodies were unaffected. The observations support a role of MP-interacting microtubules in TMV RNA movement and indicate that MP targets microtubules and Pd by independent mechanisms. Moreover, accumulation of MP in Pd late in infection is insufficient to support viral movement, confirming that intercellular transport of vRNA relies on the presence of MP in Pd at the leading edge of infection.  相似文献   

2.
The targeting of the movement protein (MP) of Tobacco mosaic virus to plasmodesmata involves the actin/endoplasmic reticulum network and does not require an intact microtubule cytoskeleton. Nevertheless, the ability of MP to facilitate the cell-to-cell spread of infection is tightly correlated with interactions of the protein with microtubules, indicating that the microtubule system is involved in the transport of viral RNA. While the MP acts like a microtubule-associated protein able to stabilize microtubules during late infection stages, the protein was also shown to cause the inactivation of the centrosome upon expression in mammalian cells, thus suggesting that MP may interact with factors involved in microtubule attachment, nucleation, or polymerization. To further investigate the interactions of MP with the microtubule system in planta, we expressed the MP in the presence of green fluorescent protein (GFP)-fused microtubule end-binding protein 1a (EB1a) of Arabidopsis (Arabidopsis thaliana; AtEB1a:GFP). The two proteins colocalize and interact in vivo as well as in vitro and exhibit mutual functional interference. These findings suggest that MP interacts with EB1 and that this interaction may play a role in the associations of MP with the microtubule system during infection.  相似文献   

3.
Functional studies of Tobacco mosaic virus (TMV) infection using virus derivatives expressing functional, dysfunctional, and temperature-sensitive movement protein (MP) mutants indicated that the cell-to-cell transport of TMV RNA is functionally correlated with the association of MP with microtubules. However, the role of microtubules in the movement process during early infection remains unclear, since MP accumulates on microtubules rather late in infection and treatment of plants with microtubule-disrupting agents fails to strongly interfere with cell-to-cell movement of TMV RNA. To further test the role of microtubules in TMV cell-to-cell movement, we investigated TMV strain Ni2519, which is temperature-sensitive for movement. We demonstrate that the temperature-sensitive defect in movement is correlated with temperature-sensitive changes in the localization of MP to microtubules. Furthermore, we show that during early phases of recovery from non-permissive conditions, the MP localizes to microtubule-associated particles. Similar particles are found in cells at the leading front of spreading TMV infection sites. Initially mobile, the particles become immobile when MP starts to accumulate along the length of the particle-associated microtubules. Our observations confirm a role for microtubules in the spread of TMV infection and associate this role with microtubule-associated trafficking of MP-containing particles in cells engaged in the cell-to-cell movement of the TMV genome.  相似文献   

4.
The movement protein (MP) of tobacco mosaic virus (TMV) is essential for spread of the viral RNA genome from cell to cell. During infection, the MP associates with microtubules, and it has been proposed that the cytoskeleton transports the viral ribonucleoprotein complex from ER sites of synthesis to plasmodesmata through which infection spreads into adjacent cells. However, microtubule association of MP was observed in cells undergoing late infection rather than in cells undergoing early infection at the leading edge of expanding infection sites where virus RNA cell-to-cell spread occurs. Therefore, alternative roles for microtubules in virus infection have been proposed, including a role in MP degradation. To further investigate the role of microtubules in virus pathogenesis, we tested the efficiency of cell-to-cell spread of infection and microtubule association of the MP in response to changes in temperature. We show that the subcellular distribution of MP is temperature-dependent and that a higher efficiency of intercellular transport of virus RNA at elevated temperatures corresponds to an increased association of MP with microtubules early in infection.  相似文献   

5.
Little is known about the mechanisms of intracellular targeting of viral nucleic acids within infected cells. We used in situ hybridization to visualize the distribution of tobacco mosaic virus (TMV) viral RNA (vRNA) in infected tobacco protoplasts. Immunostaining of the ER lumenal binding protein (BiP) concurrent with in situ hybridization revealed that vRNA colocalized with the ER, including perinuclear ER. At midstages of infection, vRNA accumulated in large irregular bodies associated with cytoplasmic filaments while at late stages, vRNA was dispersed throughout the cytoplasm and was associated with hair-like protrusions from the plasma membrane containing ER. TMV movement protein (MP) and replicase colocalized with vRNA, suggesting that viral replication and translation occur in the same subcellular sites. Immunostaining with tubulin provided evidence of colocalization of vRNA with microtubules, while disruption of the cytoskeleton with pharmacological agents produced severe changes in vRNA localization. Mutants of TMV lacking functional MP accumulated vRNA, but the distribution of vRNA was different from that observed in wild-type infection. MP was not required for association of vRNA with perinuclear ER, but was required for the formation of the large irregular bodies and association of vRNA with the hair-like protrusions.  相似文献   

6.
Role of P30 in replication and spread of TMV   总被引:2,自引:1,他引:1  
The P30 movement protein (MP) of tobacco mosaic virus is essential for distribution of sites of replication within infected cells and for cell–cell spread of infection. MP is an integral membrane protein and in early and mid-stages of infection causes severe disruption of the cortical endoplasmic reticulum (ER). MP also associates with microtubules, and in late stages is targeted for degradation by the 26S proteosome. During these stages, the ER regains its normal pre-infection configuration. Viral RNA is associated with ER and microtubules in the presence of MP. The MP is phosphorylated and mutation of the phosphorylated amino acid reduced association of MP with the ER, plasmodesmata, and microtubules, and altered the stability of the MP. The nature of the association of MP with vRNA and ER and microtubules, and the role of phosphorylation of MP in each of these functions, if any, remains to be determined.  相似文献   

7.
Cell-to-cell progression of tobacco mosaic virus (TMV) infection in plants depends on virus-encoded movement protein (MP). Here we show that a conserved sequence motif in tobamovirus MPs shares similarity with a region in tubulins that is proposed to mediate lateral contacts between microtubule protofilaments. Point mutations in this motif confer temperature sensitivity to microtubule association and viral-RNA intercellular-transport functions of the protein, indicating that MP-interacting microtubules are functionally involved in the transport of vRNA to plasmodesmata. Moreover, we show that MP interacts with microtubule-nucleation sites. Together, our results indicate that MP may mimic tubulin assembly surfaces to propel vRNA transport by a dynamic process that is driven by microtubule polymerization.  相似文献   

8.
Virus spread through plasmodesmata (Pd) is mediated by virus-encoded movement proteins (MPs) that modify Pd structure and function. The MP of Tobacco mosaic virus ((TMV)MP) is an endoplasmic reticulum (ER) integral membrane protein that binds viral RNA (vRNA), forming a vRNA:MP:ER complex. It has been hypothesized that (TMV)MP causes Pd to dilate, thus potentiating a cytoskeletal mediated sliding of the vRNA:MP:ER complex through Pd; in the absence of MP, by contrast, the ER cannot move through Pd. An alternate model proposes that cell-to-cell spread takes place by diffusion of the MP:vRNA complex in the ER membranes which traverse Pd. To test these models, we measured the effect of (TMV)MP and replicase expression on cell-to-cell spread of several green fluorescent protein-fused probes: a soluble cytoplasmic protein, two ER lumen proteins, and two ER membrane-bound proteins. Our data support the diffusion model in which a complex that includes ER-embedded MP, vRNA, and other components diffuses in the ER membrane within the Pd driven by the concentration gradient between an infected cell and adjacent noninfected cells. The data also suggest that the virus replicase and MP function together in altering Pd conductivity.  相似文献   

9.
The Tobacco mosaic virus (TMV) movement protein (MPTMV) mediates cell-to-cell viral trafficking by altering properties of the plasmodesmata (Pd) in infected cells. During the infection cycle, MPTMV becomes transiently associated with endomembranes, microfilaments, and microtubules (MT). It has been shown that the cell-to-cell spread of TMV is reduced in plants expressing the dysfunctional MP mutant MPNT-1. To expand our understanding of the MP function, we analyzed events occurring during the intracellular and intercellular targeting of MPTMV and MPNT-1 when expressed as a fusion protein to green fluorescent protein (GFP), either by biolistic bombardment in a viral-free system or from a recombinant virus. The accumulation of MPTMV:GFP, when expressed in a viral-free system, is similar to MPTMV:GFP in TMV-infected tissues. Pd localization and cell-to-cell spread are late events, occurring only after accumulation of MP:GFP in aggregate bodies and on MT in the target cell. MPNT-1:GFP localizes to MT but does not target to Pd nor does it move cell to cell. The spread of transiently expressed MPTMV:GFP in leaves of transgenic plants that produce MPNT-1 is reduced, and targeting of the MPTMV:GFP to the cytoskeleton is inhibited. Although MPTMV:GFP targets to the Pd in these plants, it is partially impaired for movement. It has been suggested that MPNT-1 interferes with host-dependent processes that occur during the intracellular targeting program that makes MP movement competent.  相似文献   

10.
The movement protein of tobacco mosaic virus, MP30, mediates viral cell-to-cell transport via plasmodesmata. The complex MP30 intra- and intercellular distribution pattern includes localization to the endoplasmic reticulum, cytoplasmic bodies, microtubules, and plasmodesmata and likely requires interaction with plant endogenous factors. We have identified and analyzed an MP30-interacting protein, MPB2C, from the host plant Nicotiana tabacum. MPB2C constitutes a previously uncharacterized microtubule-associated protein that binds to and colocalizes with MP30 at microtubules. In vivo studies indicate that MPB2C mediates accumulation of MP30 at microtubules and interferes with MP30 cell-to-cell movement. In contrast, intercellular transport of a functionally enhanced MP30 mutant, which does not accumulate and colocalize with MP30 at microtubules, is not impaired by MPB2C. Together, these data support the concept that MPB2C is not required for MP30 cell-to-cell movement but may act as a negative effector of MP30 cell-to-cell transport activity.  相似文献   

11.
The movement protein (MP) of Tobacco mosaic virus interacts with microtubules during infection. Although this interaction is correlated with the function of MP in the cell-to-cell transport of viral RNA, a direct role of microtubules in the movement process was recently challenged by studies involving the treatment of plants with inhibitors of microtubule polymerization. Here, we report evidence suggesting that such treatments may not efficiently disrupt all microtubules. Thus, results obtained from studies using microtubule inhibitors may have to remain open to interpretation with regard to the involvement of microtubules in viral RNA trafficking.  相似文献   

12.
The movement protein (MP) of Tobacco mosaic virus mediates the cell-to-cell transport of viral RNA through plasmodesmata, cytoplasmic cell wall channels for direct cell-to-cell communication between adjacent cells. Previous in vivo studies demonstrated that the RNA transport function of the protein correlates with its association with microtubules, although the exact role of microtubules in the movement process remains unknown. Since the binding of MP to microtubules is conserved in transfected mammalian cells, we took advantage of available mammalian cell biology reagents and tools to further address the interaction in flat-growing and transparent COS-7 cells. We demonstrate that neither actin, nor endoplasmic reticulum (ER), nor dynein motor complexes are involved in the apparent alignment of MP with microtubules. Together with results of in vitro coprecipitation experiments, these findings indicate that MP binds microtubules directly. Unlike microtubules associated with neuronal MAP2c, MP-associated microtubules are resistant to disruption by microtubule-disrupting agents or cold, suggesting that MP is a specialized microtubule binding protein that forms unusually stable complexes with microtubules. MP-associated microtubules accumulate ER membranes, which is consistent with a proposed role for MP in the recruitment of membranes in infected plant cells and may suggest that microtubules are involved in this process. The ability of MP to interfere with centrosomal gamma-tubulin is independent of microtubule association with MP, does not involve the removal of other tested centrosomal markers, and correlates with inhibition of centrosomal microtubule nucleation activity. These observations suggest that the function of MP in viral movement may involve interaction with the microtubule-nucleating machinery.  相似文献   

13.
Microtubules interact strongly with the viral movement protein (MP) of Tobacco mosaic virus (TMV) and are thought to transport the viral genome between plant cells. We describe a functionally enhanced DNA-shuffled movement protein (MP(R3)) that remained bound to the vertices of the cortical endoplasmic reticulum, showing limited affinity for microtubules. A single amino acid change was shown to confer the MP(R3) phenotype. Disruption of the microtubule cytoskeleton in situ with pharmacological agents, or by silencing of the alpha-tubulin gene, had no significant effect on the spread of TMV vectors expressing wild-type MP (MP(WT)) and did not prevent the accumulation of MP(WT) in plasmodesmata. Thus, cell-to-cell trafficking of TMV can occur independently of microtubules. The MP(R3) phenotype was reproduced when infection sites expressing MP(WT) were treated with a specific proteasome inhibitor, indicating that the degradation of MP(R3) is impaired. We suggest that the improved viral transport functions of MP(R3) arise from evasion of a host degradation pathway.  相似文献   

14.
Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP) may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA.  相似文献   

15.
The tobacco mosaic virus (TMV) movement protein (MP) required for the cell-to-cell spread of viral RNA interacts with the endoplasmic reticulum (ER) as well as with the cytoskeleton during infection. Whereas associations of MP with ER and microtubules have been intensely investigated, research on the role of actin has been rather scarce. We demonstrate that Nicotiana benthamiana plants transgenic for the actin-binding domain 2 of Arabidopsis (Arabidopsis thaliana) fimbrin (AtFIM1) fused to green fluorescent protein (ABD2:GFP) exhibit a dynamic ABD2:GFP-labeled actin cytoskeleton and myosin-dependent Golgi trafficking. These plants also support the movement of TMV. In contrast, both myosin-dependent Golgi trafficking and TMV movement are dominantly inhibited when ABD2:GFP is expressed transiently. Inhibition is mediated through binding of ABD2:GFP to actin filaments, since TMV movement is restored upon disruption of the ABD2:GFP-labeled actin network with latrunculin B. Latrunculin B shows no significant effect on the spread of TMV infection in either wild-type plants or ABD2:GFP transgenic plants under our treatment conditions. We did not observe any binding of MP along the length of actin filaments. Collectively, these observations demonstrate that TMV movement does not require an intact actomyosin system. Nevertheless, actin-binding proteins appear to have the potential to exert control over TMV movement through the inhibition of myosin-associated protein trafficking along the ER membrane.  相似文献   

16.
Tau protein function in living cells   总被引:20,自引:14,他引:6       下载免费PDF全文
《The Journal of cell biology》1986,103(6):2739-2746
Tau protein from mammalian brain promotes microtubule polymerization in vitro and is induced during nerve cell differentiation. However, the effects of tau or any other microtubule-associated protein on tubulin assembly within cells are presently unknown. We have tested tau protein activity in vivo by microinjection into a cell type that has no endogenous tau protein. Immunofluorescence shows that tau protein microinjected into fibroblast cells associates specifically with microtubules. The injected tau protein increases tubulin polymerization and stabilizes microtubules against depolymerization. This increased polymerization does not, however, cause major changes in cell morphology or microtubule arrangement. Thus, tau protein acts in vivo primarily to induce tubulin assembly and stabilize microtubules, activities that may be necessary, but not sufficient, for neuronal morphogenesis.  相似文献   

17.
Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus.  相似文献   

18.
Recently, we revealed that microtubule-associated protein (MAP) 4 isoforms, which differ in the number of repeat sequences, alter the microtubule surface properties, and we proposed a hypothesis stating that the change in the surface properties may regulate the movements of microtubule motors [Tokuraku et al. (2003) J Biol Chem 278: 29609-29618]. In this study, we examined whether MAP4 isoforms affect the kinesin motor activity. When the MAP4 isoforms were present in an in vitro gliding assay, the five-repeat isoform but not the three- and four-repeat isoforms inhibited the movement of the microtubules in a concentration-dependent manner. The observation of individual microtubules revealed that in the presence of the five-repeat isoform, the microtubules completely stopped their movements or recurrently paused and resumed their movements, with no deceleration in the moving phase. The result can be explained by assuming that kinesin stops its movement when it encounters a microtubular region whose properties are altered by the MAPs. A sedimentation assay demonstrated that the MAP4 isoforms did not compete with kinesin for binding to microtubules, indicating that kinesin can bind to the MAP-bound microtubules, although it cannot move on them.  相似文献   

19.
Tobacco mosaic virus (TMV) derivatives that encode movement protein (MP) as a fusion to the green fluorescent protein (MP:GFP) were used in combination with antibody staining to identify host cell components to which MP and replicase accumulate in cells of infected Nicotiana benthamiana leaves and in infected BY-2 protoplasts. MP:GFP and replicase colocalized to the endoplasmic reticulum (ER; especially the cortical ER) and were present in large, irregularly shaped, ER-derived structures that may represent "viral factories." The ER-derived structures required an intact cytoskeleton, and microtubules appeared to redistribute MP:GFP from these sites during late stages of infection. In leaves, MP:GFP accumulated in plasmodesmata, whereas in protoplasts, the MP:GFP was targeted to distinct, punctate sites near the plasma membrane. Treating protoplasts with cytochalasin D and brefeldin A at the time of inoculation prevented the accumulation of MP:GFP at these sites. It is proposed that the punctate sites anchor the cortical ER to plasma membrane and are related to sites at which plasmodesmata form in walled cells. Hairlike structures containing MP:GFP appeared on the surface of some of the infected protoplasts and are reminiscent of similar structures induced by other plant viruses. We present a model that postulates the role of the ER and cytoskeleton in targeting the MP and viral ribonucleoprotein from sites of virus synthesis to the plasmodesmata through which infection is spread.  相似文献   

20.
Plasmodesma (PD) is a channel structure that spans the cell wall and provides symplastic connection between adjacent cells. Various macromolecules are known to be transported through PD in a highly regulated manner, and plant viruses utilize their movement proteins (MPs) to gate the PD to spread cell-to-cell. The mechanism by which MP modifies PD to enable intercelluar traffic remains obscure, due to the lack of knowledge about the host factors that mediate the process. Here, we describe the functional interaction between Tobacco mosaic virus (TMV) MP and a plant factor, an ankyrin repeat containing protein (ANK), during the viral cell-to-cell movement. We utilized a reverse genetics approach to gain insight into the possible involvement of ANK in viral movement. To this end, ANK overexpressor and suppressor lines were generated, and the movement of MP was tested. MP movement was facilitated in the ANK-overexpressing plants, and reduced in the ANK-suppressing plants, demonstrating that ANK is a host factor that facilitates MP cell-to-cell movement. Also, the TMV local infection was largely delayed in the ANK-suppressing lines, while enhanced in the ANK-overexpressing lines, showing that ANK is crucially involved in the infection process. Importantly, MP interacted with ANK at PD. Finally, simultaneous expression of MP and ANK markedly decreased the PD levels of callose, β-1,3-glucan, which is known to act as a molecular sphincter for PD. Thus, the MP-ANK interaction results in the downregulation of callose and increased cell-to-cell movement of the viral protein. These findings suggest that ANK represents a host cellular receptor exploited by MP to aid viral movement by gating PD through relaxation of their callose sphincters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号