首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A solution-based method, mRNA accessible site tagging (MAST), has been developed to map the accessible sites of any given mRNA in high throughput fashion. mRNA molecules were immobilized and hybridized to randomized oligonucleotide libraries. Oligonucleotides specifically hybridized to the mRNA were sequenced and found to be able to precisely define the accessible sites of the mRNA. A number of ways were used to validate the accessible sites defined by the MAST process. Mapping of rabbit β-globin mRNA demonstrates the efficacy and advantage of MAST over other technologies in identifying accessible sites. Antisense oligonucleotides designed according to the accessible site map of human RhoA and Renilla luciferase mRNA result in knockdown effects that are in good correlation with the degrees of accessibility. The MAST methodology can be applied to mRNA of any length using a universal protocol.  相似文献   

2.
软件预测和MAST技术筛选mRNA反义核酸靶点的比较   总被引:2,自引:0,他引:2  
基因mRNA的结构靶点筛选是反义核酸药物研发的一个难题 .兔 (Oryctolaguscuniculus) β珠蛋白基因mRNA的结构靶位点通过运用MAST技术筛选获得 ,和计算机软件RNAstructure3 71模拟分析的位点进行了比较 ,也和寡核苷酸微阵列杂交技术筛选获得的靶点结果 (M .Natalie ,1 997)进行了比较 ,显示 :据MAST技术获得的兔 β珠蛋白基因 2个反义核酸结合靶位点 ,和用RNAstructure3 71软件给出的模拟分析的 2个靶位点相同 ,且它们与寡核苷酸微阵列杂交技术的结果完全一致 .运用MAST技术筛选获得绿色荧光蛋白 (GFP)mRNA有 4个结构靶位点 ,体外分析表明这 4个靶位点均有效 ,其中有 3个与RNAstructure3 71软件分析的靶点相同 ,但计算机模拟推荐的结构靶位点较多 ,而且随着基因长度增加确认靶位点的难度增大 ,获得的靶位点还需要实验验证 ,计算机软件模拟分析对实验筛选靶点、设计反义核酸有辅助价值 .MAST方法能筛选各种长度基因mRNA的全部可及位点和准确给定核苷酸的起止位置以供设计反义核酸 ,具有简单快捷的优点 ,将能为反义核酸设计起重要作用 .  相似文献   

3.
针对细菌rRNA研发抑制细菌增殖的新型抗菌素是抗生素研究领域的新课题。细菌rRNA与基因mRNA一样自然形成折叠卷曲高级结构,其结构上可以结合反义核酸的位点即靶点,靶点的阐明是设计有效反义核酸、核酶(Ribozyme)和脱氧核酶(DNAzyme)的关键。MAST方法固定16S rRNA,将其与寡核苷酸文库杂交筛选出靶点,获得了大肠杆菌16S rRNA的6个反义核酸结合靶点,并鉴定5个靶点有效,其中1个为高效。5个靶点的反义核酸能在通透性大肠杆菌菌株培养中不同程度地抑制其生长,针对高效靶点的核酶在转化大肠杆菌中表达而抑制其生长。  相似文献   

4.

Background  

Local structures of target mRNAs play a significant role in determining the efficacies of antisense oligonucleotides (ODNs), but some structure-based target site selection methods are limited by uncertainties in RNA secondary structure prediction. If all the predicted structures of a given mRNA within a certain energy limit could be used simultaneously, target site selection would obviously be improved in both reliability and efficiency. In this study, some key problems in ODN target selection on the basis of multiple predicted target mRNA structures are systematically discussed.  相似文献   

5.
The development of antisense oligonucleotides (AS-ODN) always had the limitation that because of complex mRNA secondary structures, not every designed AS-ODN inhibited the expression of its target. There have been many investigations to overcome this problem in the last few years. This produced a great deal of theoretical and empirical findings about characteristics of effective AS-ODNs in respect to their target regions but no standardized selection procedure of AS-ODN target regions within a given mRNA or standardized design of AS-ODNs against a specific target region. We present here a standardized method based on secondary structure prediction for target site selection and AS-ODN design, followed by validation of the antisense effect caused by our predicted AS-ODNs in cell culture. The combination of theoretical design and experimental selection procedure led to an AS-ODN that efficiently and specifically reduces prothrombin mRNA and antigen.  相似文献   

6.
7.
MAST方法采用人工文库的DNA标签序列鉴定mRNA的可接近位点。大量的标签序列通过扩增和克隆测序达到阐明mRNA结合位点图。设计了单一引物的PCR,其引物在标签序列两端结合搭桥,在扩增中DNA标签序列在搭桥引物的作用下进行连接,连接的标签序列再克隆和测序。十几条这样的连接产物包含了上千条标签序列。该PCR方法简单、高效以用于高通量的方式对标签序列测序。  相似文献   

8.
Potent effect of target structure on microRNA function   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small noncoding RNAs that repress protein synthesis by binding to target messenger RNAs. We investigated the effect of target secondary structure on the efficacy of repression by miRNAs. Using structures predicted by the Sfold program, we model the interaction between an miRNA and a target as a two-step hybridization reaction: nucleation at an accessible target site followed by hybrid elongation to disrupt local target secondary structure and form the complete miRNA-target duplex. This model accurately accounts for the sensitivity to repression by let-7 of various mutant forms of the Caenorhabditis elegans lin-41 3' untranslated region and for other experimentally tested miRNA-target interactions in C. elegans and Drosophila melanogaster. These findings indicate a potent effect of target structure on target recognition by miRNAs and establish a structure-based framework for genome-wide identification of animal miRNA targets.  相似文献   

9.
Antisense DNA target sites can be selected by the accessibility of the mRNA target. It remains unknown whether a mRNA site that is accessible to an antisense DNA is also a good candidate target site for a siRNA. Here, we reported a parallel analysis of 12 pairs of antisense DNAs and siRNA duplexes for their potency to inhibit reporter luciferase activity in mammalian cells, both of the antisense DNA and siRNA agents in a pair being directed to same site in the mRNA. Five siRNAs and two antisense DNAs turned out to be effective, but the sites targeted by those effective siRNAs and antisense DNAs did not overlap. Our results indicated that effective antisense DNAs and siRNAs have different preferences for target sites in the mRNA.  相似文献   

10.
11.
We have investigated the relative merits of two commonly used methods for target site selection for ribozymes: secondary structure prediction (MFold program) and in vitro accessibility assays. A total of eight methylated ribozymes with DNA arms were synthesized and analyzed in a transient co-transfection assay in HeLa cells. Residual expression levels ranging from 23 to 72% were obtained with anti-PSKH1 ribozymes compared to cells transfected with an irrelevant control ribozyme. Ribozyme efficacy depended on both ribozyme concentration and the steady state expression levels of the target mRNA. Allylated ribozymes against a subset of the target sites generally displayed poorer efficacy than their methylated counterparts. This effect appeared to be influenced by in vivo accessibility of the target site. Ribozymes designed on the basis of either selection method displayed a wide range of efficacies with no significant differences in the average activities of the two groups of ribozymes. While in vitro accessibility assays had limited predictive power, there was a significant correlation between certain features of the predicted secondary structure of the target sequence and the efficacy of the corresponding ribozyme. Specifically, ribozyme efficacy appeared to be positively correlated with the presence of short stem regions and helices of low stability within their target sequences. There were no correlations with predicted free energy or loop length.  相似文献   

12.
MOTIVATION: We are motivated by the fast-growing number of protein structures in the Protein Data Bank with necessary information for prediction of protein-protein interaction sites to develop methods for identification of residues participating in protein-protein interactions. We would like to compare conditional random fields (CRFs)-based method with conventional classification-based methods that omit the relation between two labels of neighboring residues to show the advantages of CRFs-based method in predicting protein-protein interaction sites. RESULTS: The prediction of protein-protein interaction sites is solved as a sequential labeling problem by applying CRFs with features including protein sequence profile and residue accessible surface area. The CRFs-based method can achieve a comparable performance with state-of-the-art methods, when 1276 nonredundant hetero-complex protein chains are used as training and test set. Experimental result shows that CRFs-based method is a powerful and robust protein-protein interaction site prediction method and can be used to guide biologists to make specific experiments on proteins. AVAILABILITY: http://www.insun.hit.edu.cn/~mhli/site_CRFs/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

13.
Single-stranded regions in RNA secondary structure are important for RNA–RNA and RNA–protein interactions. We present a probability profile approach for the prediction of these regions based on a statistical algorithm for sampling RNA secondary structures. For the prediction of phylogenetically-determined single-stranded regions in secondary structures of representative RNA sequences, the probability profile offers substantial improvement over the minimum free energy structure. In designing antisense oligonucleotides, a practical problem is how to select a secondary structure for the target mRNA from the optimal structure(s) and many suboptimal structures with similar free energies. By summarizing the information from a statistical sample of probable secondary structures in a single plot, the probability profile not only presents a solution to this dilemma, but also reveals ‘well-determined’ single-stranded regions through the assignment of probabilities as measures of confidence in predictions. In antisense application to the rabbit β-globin mRNA, a significant correlation between hybridization potential predicted by the probability profile and the degree of inhibition of in vitro translation suggests that the probability profile approach is valuable for the identification of effective antisense target sites. Coupling computational design with DNA–RNA array technique provides a rational, efficient framework for antisense oligonucleotide screening. This framework has the potential for high-throughput applications to functional genomics and drug target validation.  相似文献   

14.
R A Stull  L A Taylor    F C Szoka  Jr 《Nucleic acids research》1992,20(13):3501-3508
Antisense oligonucleotides (ASOs) are designed to bind to a specific mRNA and selectively suppress its translation. To facilitate selection of optimal ASO targets, we have developed three thermodynamic indices to evaluate putative structural complexes important in ASO action. These indices are: a secondary structure score (Sscore), which estimates the strength of local mRNA secondary structures at the ASO target site; a duplex score (Dscore), which estimates the delta Gformation for the ASO:mRNA target sequence duplex; and a competition score (Cscore), which is the difference between the Dscore and the Sscore. We also present two histograms to graphically display these indices from different regions of the mRNA. The indices are compared to the inhibition reported in five studies of ASO-mediated suppression of gene expression. The Dscore is the most consistent predictor of ASO efficacy in four of the five studies (r2 from 0.44 to 0.99), while the results of the fifth study could not be predicted by any thermodynamic or physical index. Thus the Dscores and their histogram may prove useful in selection of ASO targets.  相似文献   

15.
Antisense RNAs in prokaryotic systems often inhibit translation of mRNAs. In some cases, this involves sequestration of Shine-Dalgarno (SD) sequences and start codons. In other cases, antisense/target RNA duplexes do not overlap these signals, but form upstream. We have performed toeprinting analyses on repA mRNA of plasmid R1, both free and in duplex with the antisense RNA, CopA. An intermolecular RNA duplex 2 nt upstream of the tap SD prevents ribosome binding. An intrastrand stem-loop at this location yields the same inhibition. Thus, stable secondary structures immediately upstream of the tap SD sequence inhibit translation, as shown by toeprinting in vitro and repA-lacZ expression in vivo. Previous work showed that repA (initiator protein) expression requires tap (leader peptide) translation. Toeprinting data confirm that the tap ribosome binding site (RBS) is accessible, whereas the repA RBS, which is sequestered by a stable stem-loop, is weakly recognized by the ribosome. Truncated CopA RNA (CopI) is unable to pair completely with target RNA, but proceeds normally to a kissing intermediate. This mutant RNA species inhibits repA expression in vivo. By a kinetic toeprint inhibition protocol, we have shown that the structure of the kissing complex is sufficient to sterically prevent ribosome binding. These results are discussed in comparison with the effect of RNA structures elsewhere in the ribosome-binding region of an mRNA.  相似文献   

16.
17.
Alternative mRNA splicing patterns are determined by the combinatorial control of regulator proteins and their target RNA sequences. We have recently characterized human hnRNP L as a global regulator of alternative splicing, binding to diverse C/A-rich elements. To systematically identify hnRNP L target genes on a genome-wide level, we have combined splice-sensitive microarray analysis and an RNAi-knockdown approach. As a result, we describe 11 target genes of hnRNP L that were validated by RT-PCR and that represent several new modes of hnRNP L-dependent splicing regulation, involving both activator and repressor functions: first, intron retention; second, inclusion or skipping of cassette-type exons; third, suppression of multiple exons; and fourth, alternative poly(A) site selection. In sum, this approach revealed a surprising diversity of splicing-regulatory processes as well as poly(A) site selection in which hnRNP L is involved.  相似文献   

18.
Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.  相似文献   

19.
The crystal structure based model of the catalytic center of Ago2 revealed that the siRNA and the mRNA must be able to form an A-helix for correct positing of the scissile phosphate bond for cleavage in RNAi. This suggests that base pairing of the target mRNA with itself, i.e. secondary structure, must be removed before cleavage. Early on in the siRNA design, GC-rich target sites were avoided because of their potential to be involved in strong secondary structure. It is still unclear how important a factor mRNA secondary structure is in RNAi. However, it has been established that a difference in the thermostability of the ends of an siRNA duplex dictate which strand is loaded into the RNA-induced silencing complex. Here, we use a novel secondary structure prediction method and duplex-end differential calculations to investigate the importance of a secondary structure in the siRNA design. We found that the differential duplex-end stabilities alone account for functional prediction of 60% of the 80 siRNA sites examined, and that secondary structure predictions improve the prediction of site efficacy. A total of 80% of the non-functional sites can be eliminated using secondary structure predictions and duplex-end differential.  相似文献   

20.
Computational antisense oligo prediction with a neural network model   总被引:5,自引:0,他引:5  
MOTIVATION: The expression of a gene can be selectively inhibited by antisense oligonucleotides (AOs) targeting the mRNA. However, if the target site in the mRNA is picked randomly, typically 20% or less of the AOs are effective inhibitors in vivo. The sequence properties that make an AO effective are not well understood, thus many AOs need to be tested to find good inhibitors, which is time consuming and costly. So far computational models have been based exclusively on RNA structure prediction or motif searches while ignoring information from other aspects of AO design into the model. RESULTS: We present a computational model for AO prediction based on a neural network approach using a broad range of input parameters. Collecting sequence and efficacy data from AO scanning experiments in the literature generated a database of 490 AO molecules. Using a set of derived parameters based on AO sequence properties we trained a neural network model. The best model, an ensemble of 10 networks, gave an overall correlation coefficient of 0.30 (p=10(-8)). This model can predict effective AOs (>50% inhibition of gene expression) with a success rate of 92%. Using these thresholds the model predicts on average 12 effective AOs per 1000 base pairs, making it a stringent yet practical method for AO prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号