首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil respiration is affected by distributions of roots and soil carbon substrates and by temperature and soil water content, all of which vary spatially and temporally. The objective of this paper was to compare a manual system for measuring soil respiration in a temperate forest, which had a greater spatial distribution of measurements (n=12), but poorer temporal resolution (once per week), with an automated system which had poorer spatial distribution (n=3) but superior temporal frequency of measurements (hourly). Soil respiration was measured between 18 June and 21 August, 2002, at the Harvard Forest in central Massachusetts, USA. The fluxes measured within 1 h of each other by these systems were not significantly different. However, extrapolations of the mid-morning manual measurements to daily flux values were consistently lower (averaging 13% lower) than the daily estimates obtained from summing the 24 hourly measurements of the automated system. On the other hand, seasonal flux estimates obtained by interpolating between weekly manual sampling dates or by summing the hourly automated measurements were nearly identical. Underestimates by interpolated weekly manual measurements during some periods were cancelled by overestimates during other periods. Hence, a weekly sampling schedule may be sufficient to capture the most important variation of seasonal efflux of CO(2) from the soil. The larger number of chambers that could be measured with the manual system (larger n) resulted in a smaller 95% confidence interval for characterizing spatial variability within the study area on most dates. However, the greater sampling frequency of the automated system revealed rapid responses of soil respiration to wetting events, which permitted better empirical modelling of the effects of soil temperature and moisture on soil respiration than could have been achieved with the manual sampling system. Most of the positive residuals of a function that predicts soil respiration based on temperature were from fluxes measured within 12 h of a rain event, and the residuals were positively correlated with water content of the O horizon. The automated system also demonstrated that Q(10) values calculated for diel variation in soil temperature over a few days were not significantly different than Q(10) values for the entire 3 month summer sampling period. In summary, a manual system of numerous, spatially well-distributed flux chambers measured on a weekly basis may be adequate for measuring seasonal fluxes and may maximize confidence in the characterization of spatial variance. The high temporal frequency of measurements afforded by automation greatly improves the ability to measure and model the effects of rapidly varying water content and temperature. When the two approaches can be combined, the temporal representativeness of the manual measurements can be tested with the automated measurements and the spatial representativeness of the automated measurements can be tested by the manual measurements.  相似文献   

2.
Risch AC  Frank DA 《Oecologia》2006,147(2):291-302
Landscape position, grazing, and seasonal variation in precipitation and temperature create spatial and temporal variability in soil processes, and plant biomass and composition in grasslands. However, it is unclear how this variation in plant and soil properties affects carbon dioxide (CO2) fluxes. The aim of this study is to explore the effect of grazing, topographic position, and seasonal variation in soil moisture and temperature on plant assimilation, shoot and soil respiration, and net ecosystem CO2 exchange (NEE). Carbon dioxide fluxes, vegetation, and environmental variables were measured once a month inside and outside long-term ungulate exclosures in hilltop (dry) to slope bottom (mesic) grassland throughout the 2004 growing season in Yellowstone National Park. There was no difference in vegetation properties and CO2 fluxes between the grazed and the ungrazed sites. The spatial and temporal variability in CO2 fluxes were related to differences in aboveground biomass and total shoot nitrogen content, which were both related to variability in soil moisture. All sites were CO2 sinks (NEE>0) for all our measurments taken throughout the growing season; but CO2 fluxes were four- to fivefold higher at sites supporting the most aboveground biomass located at slope bottoms, compared to the sites with low biomass located at hilltops or slopes. The dry sites assimilated more CO2 per gram aboveground biomass and stored proportionally more of the gross-assimilated CO2 in the soil, compared to wet sites. These results indicate large spatio-temporal variability of CO2 fluxes and suggest factors that control the variability in Yellowstone National Park.  相似文献   

3.
The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11-54 Μmol m-2 s-1 was found in August 2004 and the lowest soil respiration rate of 4.99 Μmol m-2 s-1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m-2 in August 2004 to 102 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 Μmol m-2 s-1) and lowest in October 2004 (1.7 Μmol m-2 s-1). Microbial respiration rate was highest in August 2004 (5.8 Μmol m-2 s-1) and lowest in April 2005 (2.59 Μmol m-2 s-1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.  相似文献   

4.
We explored the influence of small-scale spatial variation in soil moisture on CO2 fluxes in the high Arctic. Of five sites forming a hydrological gradient, CO2 was emitted from the three driest sites and only the wettest site was a net sink of CO2. Soil moisture was a good predictor of net ecosystem exchange (NEE). Higher gross ecosystem photosynthesis (GEP) was linked to higher bryophyte biomass and activity in response to the moisture conditions. Ecosystem respiration (R e) rates increased with soil moisture until the soil became anaerobic and then R e decreased. At well-drained sites R e was driven by GEP, suggesting substrate and moisture limitation of soil respiration. We propose that spatial variability in soil moisture is a primary driver of NEE.  相似文献   

5.
Climatic change is predicted to alter rates of soil respiration and assimilation of carbon by plants. Net loss of carbon from ecosystems would form a positive feedback enhancing anthropogenic global warming. We tested the effect of increased heat input, one of the most certain impacts of global warming, on net ecosystem carbon exchange in a Rocky Mountain montane meadow. Overhead heaters were used to increase the radiative heat flux into plots spanning a moisture and vegetation gradient. We measured net whole-ecosystem CO2 fluxes using a closed-path chamber system, relatively nondisturbing bases, and a simple model to compensate for both slow chamber leaks and the CO2 concentration-dependence of photosynthetic uptake, in 1993 and 1994. In 1994, we also measured soil respiration separately. The heating treatment altered the timing and magnitude of net carbon fluxes into the dry zone of the plots in 1993 (reducing uptake by ≈100 g carbon m–2), but had an undetectable effect on carbon fluxes into the moist zone. During a strong drought year (1994), heating altered the timing, but did not significantly alter the cumulative magnitude, of net carbon uptake in the dry zone. Soil respiration measurements showed that when differences were detected in dry zone carbon fluxes, they were caused by changes in carbon input from photosynthesis, not by temperature-driven changes in carbon output from soil respiration. When differences were detected in dry-zone carbon fluxes, they were caused by changes in carbon input from photosynthesis, not by a temperature-driven changes in carbon output from soil respiration. Regression analysis suggested that the reduction in carbon inputs from plants was due to a combination of two soil moisture effects: a direct physiological response to decreased soil moisture, and a shift in plant community composition from high-productivity species to low-productivity species that are more drought tolerant. These results partially support predictions that warming may cause net carbon losses from some terrestrial ecosystems. They also suggest, however, that changes in soil moisture caused by global warming may be as important in driving ecosystem response as the direct effects of increased soil temperature.  相似文献   

6.
The contribution of the organic (O) horizon to total soil respiration is poorly understood even though it can represent a large source of uncertainty due to seasonal changes in microclimate and O horizon properties due to plant phenology. Our objectives were to partition the CO2 effluxes of litter layer and mineral soil from total soil respiration (SR) and determine the relative importance of changing temperature and moisture mediating the fluxes. We measured respiration in an oak-dominated forest with or without the O horizon for 1 year within the Oak Openings Region of northwest Ohio. Mineral soil and O horizon respiration were subtracted from mineral soil respiration (MSR) to estimate litter respiration (LR). Measurements were grouped by oak phenology to correlate changes in plant activity with respiration. The presence of the O horizon represented a large source of seasonal variation in SR. The timing of oak phenology explained some of the large changes in both SR and LR, and their relationship with temperature and moisture. The contribution to SR of respiration from the mineral soil was greatest during pre-growth and pre-dormancy, as evident by the low LR:MSR ratios of 0.65 ± 0.10 (mean ± SE) and 0.69 ± 0.03, respectively, as compared to the other phenophases. Including moisture increased our ability to predict MSR and SR during the growth phenophase and LR for every phenophase. Temperature and moisture explained 85% of the variation in MSR, but only 60% of the variation in LR. The annual contribution of O horizon to SR was 48% and the ratio of litter to soil respiration was tightly coupled over a wide range of environmental conditions. Our results suggest the presence of the O horizon is a major mediator of SR.  相似文献   

7.
West Coast prairies in the US are an endangered ecosystem, and effective conservation will require an understanding of how changing climate will impact nutrient cycling and availability. We examined how seasonal patterns and micro-heterogeneity in edaphic conditions (% moisture, total organic carbon, % clay, pH, and inorganic nitrogen and phosphorus) control carbon, nitrogen, and phosphorus cycling in an upland prairie in western Oregon, USA. Across the prairie, we collected soils seasonally and measured microbial respiration, net nitrogen mineralization, net nitrification, and phosphorus availability under field conditions and under experimentally varied temperature and moisture treatments. The response variables differed in the degree of temperature and moisture limitation within seasons and how these factors varied across sampling sites. In general, we found that microbial respiration was limited by low soil moisture year-round and by low temperatures in the winter. Net nitrogen mineralization and net nitrification were never limited by temperature, but both were limited by excessive soil moisture in winter, and net nitrification was also inhibited by low soil moisture in the summer. Factors that enhanced microbial respiration tended to decrease soil phosphorus availability. Edaphic factors explained 76% of the seasonal and spatial variation in microbial respiration, 35% of the variation in phosphorus availability, and 29% of the variation in net nitrification. Much of the variation in net nitrogen mineralization remained unexplained (R 2 = 0.19). This study, for the first time, demonstrates the complex seasonal controls over nutrient cycling in a Pacific Northwest prairie.  相似文献   

8.
降雨对旱作春玉米农田土壤呼吸动态的影响   总被引:2,自引:0,他引:2  
高翔  郝卫平  顾峰雪  郭瑞  夏旭  梅旭荣  李洁 《生态学报》2012,32(24):7883-7893
土壤呼吸是调控全球碳平衡和气候变化的关键过程之一,降雨作为重要的扰动因子,在不同区域和不同环境条件下,对土壤呼吸具有复杂的影响.研究降雨对农田土壤呼吸及其分量的影响,对准确预测未来气候变化下陆地生态系统碳平衡具有重要意义.对黄土高原东部典型春玉米农田生态系统生长季内3次降雨前后土壤呼吸及其分量进行了原位连续观测,结果表明:在土壤湿润的条件下,降雨对春玉米农田土壤呼吸及其分量具有明显的抑制作用,在土壤湿度大于27%后土壤呼吸及其分量随土壤湿度上升呈明显下降,且对温度的敏感性降低.土壤呼吸及其分量在降雨前后的变化受土壤温度和土壤湿度的共同影响.降雨量、降雨历时和雨前土壤含水量决定了土壤呼吸及其分量对降雨响应的程度和时长.土壤呼吸及其分量对土壤温度的敏感性各不相同,微生物呼吸对温度的敏感性最高,Q10为5.14;其次是土壤呼吸,Q10为3.86;根呼吸的温度敏感性相对最低,Q10为3.24.由于土壤呼吸分量对温度和湿度的敏感性不同,降雨后根呼吸的比例有所升高.  相似文献   

9.
南方红壤区3年生茶园土壤呼吸特征   总被引:4,自引:0,他引:4  
为探讨南方红壤区茶园的土壤呼吸特征,采用LI-Cor8100开路式土壤碳通量测定系统观测3年生茶园系统的土壤呼吸速率,对茶园土壤呼吸速率的季节变化和在茶行尺度上的空间异质性进行了研究。结果表明,茶园土壤呼吸速率的月动态变化呈明显的单峰曲线特征,峰值出现在8月;茶园土壤呼吸速率的月动态变化与温度呈极显著相关(P<0.01),土壤10 cm的温度能够解释茶园不同观测区域土壤呼吸速率月动态变化的67.79%~88.52%;用指数方程计算的茶园不同观测区域土壤呼吸Q10值为1.58~1.86。在茶行尺度上,茶园土壤呼吸速率存在明显的空间异质性,土壤呼吸速率通常在距离茶树基部较近的位置较高;根系生物量能够解释茶园土壤呼吸速率在茶行尺度上空间变异的82.68%。因此,根系分布的空间差异是造成茶园土壤呼吸速率空间异质性的主要原因。  相似文献   

10.
In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µ mol m?2 s?1, ranging from 1.35 to 7.03 µmol m?2 s?1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.  相似文献   

11.
Stocks of carbon in Amazonian forest biomass and soils have received considerable research attention because of their potential as sources and sinks of atmospheric CO2. Fluxes of CO2 from soil to the atmosphere, on the other hand, have not been addressed comprehensively in regard to temporal and spatial variations and to land cover change, and have been measured directly only in a few locations in Amazonia. Considerable variation exists across the Amazon Basin in soil properties, climate, and management practices in forests and cattle pastures that might affect soil CO2 fluxes. Here we report soil CO2 fluxes from an area of rapid deforestation in the southwestern Amazonian state of Acre. Specifically we addressed (1) the seasonal variation of soil CO2 fluxes, soil moisture, and soil temperature; (2) the effects of land cover (pastures, mature, and secondary forests) on these fluxes; (3) annual estimates of soil respiration; and (4) the relative contributions of grass‐derived and forest‐derived C as indicated by δ13CO2. Fluxes were greatest during the wet season and declined during the dry season in all land covers. Soil respiration was significantly correlated with soil water‐filled pore space but not correlated with temperature. Annual fluxes were higher in pastures compared with mature and secondary forests, and some of the pastures also had higher soil C stocks. The δ13C of CO2 respired in pasture soils showed that high respiration rates in pastures were derived almost entirely from grass root respiration and decomposition of grass residues. These results indicate that the pastures are very productive and that the larger flux of C cycling through pasture soils compared with forest soils is probably due to greater allocation of C belowground. Secondary forests had soil respiration rates similar to mature forests, and there was no correlation between soil respiration and either forest age or forest biomass. Hence, belowground allocation of C does not appear to be directly related to the stature of vegetation in this region. Variation in seasonal and annual rates of soil respiration of these forests and pastures is more indicative of flux of C through the soil rather than major net changes in ecosystem C stocks.  相似文献   

12.
Respiration has been proposed to be the main determinant of the carbon balance in European forests and is thus essential for our understanding of the carbon cycle. However, the choice of experimental design strongly affects estimates of annual respiration and of the contribution of soil respiration to total ecosystem respiration. In a detailed study of ecosystem and soil respiration fluxes in an old unmanaged deciduous forest in Central Germany over 3 years (2000–2002), we combined soil chamber and eddy covariance measurements to obtain a comprehensive picture of respiration in this forest. The closed portable chambers offered to investigate spatial variability of soil respiration and its controls while the eddy covariance system offered continuous measurements of ecosystem respiration. Over the year, both fluxes were mainly correlated with temperature. However, when soil moisture sank below 23 vol.% in the upper 6 cm, water limitations also became apparent. The temporal resolution of the eddy covariance system revealed that relatively high respiration rates occurred during budbreak due to increased metabolic activity and after leaf fall because of increased decomposition. Spatial variability in soil respiration rates was large and correlated with fine root biomass (r 2 = 0.56) resulting in estimates of annual efflux varying across plots from 730 to 1,258 (mean 898) g C m−2 year−1. Power function calculations showed that achieving a precision in the soil respiration estimate of 20% of the full population mean at a confidence level of 95%, requires about eight sampling locations. Our results can be used as guidelines to improve the representativeness of soil respiration measurements by nested sampling designs, being applied in long-term and large-scale carbon sequestration projects such as FLUXNET and CarboEurope.  相似文献   

13.
Variation in soil temperature can account for most of the seasonal and diel variation in soil CO2 efflux, but the temperature effect is not always consistent, and other factors such as soil water content are known to influence soil respiration. The objectives of this research were to study the spatial and temporal variation in soil respiration in a temperate forested landscape and to evaluate temperature and soil water functions as predictors of soil respiration. Soil CO2 fluxes were measured with chambers throughout an annual cycle in six study areas at the Harvard Forest in central Massachusetts that include soil drainage classes from well drained to very poorly drained. The mean annual estimate of soil CO2 efflux was 7.2 Mg ha–1, but ranged from 5.3 in the swamp site to 8.5 in a well-drained site, indicating that landscape heterogeneity is related to soil drainage class. An exponential function relating CO2 fluxes to soil temperature accounted for 80% of the seasonal variation in fluxes across all sites (Q10 = 3.9), but the Q10 ranged from 3.4 to 5.6 for the individual study sites. A significant drought in 1995 caused rapid declines in soil respiration rates in August and September in five of the six sites (a swamp site was the exception). This decline in CO2 fluxes correlated exponentially with decreasing soil matric potential, indicating a mechanistic effect of drought stress. At moderate to high water contents, however, soil water content was negatively correlated with soil temperature, which precluded distinguishing between the effects of these two confounded factors on CO2 flux. Occurrence of high Q10 values and variation in Q10 values among sites may be related to: (i) confounding effects of high soil water content; (ii) seasonal and diel patterns in root respiration and turnover of fine roots that are linked to above ground phenology and metabolism; and (iii) variation in the depth where CO2 is produced. The Q10 function can yield reasonably good predictions of annual fluxes of CO2, but it is a simplification that masks responses of root and microbial processes to variation in temperature and water content throughout the soil.  相似文献   

14.
The spatial upscaling of soil respiration from field measurements to ecosystem levels will be biased without studying its spatial variation. We took advantage of the unique spatial gradients of an oak–grass savanna ecosystem in California, with widely spaced oak trees overlying a grass layer, to study the spatial variation in soil respiration and to use these natural gradients to partition soil respiration according to its autotrophic and heterotrophic components. We measured soil respiration along a 42.5 m transect between two oak trees in 2001 and 2002, and found that soil respiration under tree canopies decreased with distance from its base. In the open area, tree roots have no influence on soil respiration. Seasonally, soil respiration increased in spring until late April, and decreased in summer following the decrease in soil moisture content, despite the further increase in soil temperature. Soil respiration significantly increased following the rain events in autumn. During the grass growing season between November and mid-May, the average of CO2 efflux under trees was 2.29 μmol m−2 s−1, while CO2 efflux from the open area was 1.40 μmol m−2 s−1. We deduced that oak root respiration averaged as 0.89 μmol m−2 s−1, accounting for 39% of total soil respiration (oak root + grass root + microbes). During the dry season between mid-May and October, the average of CO2 efflux under trees was 0.87 μmol m−2 s−1, while CO2 efflux from the open areas was 0.51 μmol m−2 s−1. Oak root respiration was 0.36 μmol m−2 s−1, accounting for 41% of total soil respiration (oak root + microbes). The seasonal pattern of soil CO2 efflux under trees and in open areas was simulated by a bi-variable model driven by soil temperature and moisture. The diurnal pattern was influenced by tree physiology as well. Based on the spatial gradient of soil respiration, spatial analysis of crown closure and the simulation model, we spatially and temporally upscaled chamber measurements to the ecosystem scale. We estimated that the cumulative soil respiration in 2002 was 394 gC m−2 year−1 in the open area and 616 gC m−2 year−1 under trees with a site-average of 488 gC m−2 year−1.  相似文献   

15.
万木林保护区毛竹林土壤呼吸特征及影响因素   总被引:6,自引:0,他引:6  
Wang C  Yang ZJ  Chen GS  Fan YX  Liu Q  Tian H 《应用生态学报》2011,22(5):1212-1218
2009年1-12月,利用Li-Cor 8100开路式土壤碳通量系统测定福建省万木林自然保护区毛竹林土壤呼吸速率,分析毛竹林土壤呼吸动态变化及其与凋落物量的关系.结果表明:毛竹林土壤呼吸月变化呈明显的双峰型曲线,峰值分别出现在6月(6.83 μmol·m-2·s-1)和9月(5.59μmol·m-2·s-1).土壤呼吸速率的季节变化较明显,最大值出现在夏季,最小值出现在冬季;土壤呼吸速率与土壤5 cm温度呈显著正相关关系(P<0.05),与土壤含水量无显著相关性(P>0.05);毛竹林凋落物量月变化呈单峰型曲线.毛竹林土壤呼吸速率与当月凋落物归还量呈显著正相关(P<0.05).土壤温度和凋落物量的双因素模型可以解释土壤呼吸速率变化的93.2%.  相似文献   

16.
Arid and semiarid ecosystems play a significant role in regulating global carbon cycling, yet our understanding of the controls over the dominant pathways of dryland CO2 exchange remains poor. Substantial amounts of dryland soil are not covered by vascular plants and this patchiness in cover has important implications for spatial patterns and controls of carbon cycling. Spatial variation in soil respiration has been attributed to variation in soil moisture, temperature, nutrients and rhizodeposition, while seasonal patterns have been attributed to changes in moisture, temperature and photosynthetic inputs belowground. To characterize how controls over respiration vary spatially and temporally in a dryland ecosystem and to concurrently explore multiple potential controls, we estimated whole plant net photosynthesis (Anet) and soil respiration at four distances from the plant base, as well as corresponding fine root biomass and soil carbon and nitrogen pools, four times during a growing season. To determine if the controls vary between different plant functional types for Colorado Plateau species, measurements were made on the C4 shrub, Atriplex confertifolia, and C3 grass, Achnatherum hymenoides. Soil respiration declined throughout the growing season and diminished with distance from the plant base, though variations in both were much smaller than expected. The strongest relationship was between soil respiration and soil moisture. Soil respiration was correlated with whole plant Anet, although the relationship varied between species and distance from plant base. In the especially dry year of this study we did not observe any consistent correlations between soil respiration and soil carbon or nitrogen pools. Our findings suggest that abiotic factors, especially soil moisture, strongly regulate the response of soil respiration to biotic factors and soil carbon and nitrogen pools in dryland communities and, at least in dry years, may override expected spatial and seasonal patterns.  相似文献   

17.
The two components of soil respiration, autotrophic respiration (from roots, mycorrhizal hyphae and associated microbes) and heterotrophic respiration (from decomposers), was separated in a root trenching experiment in a Norway spruce forest. In June 2003, cylinders (29.7 cm diameter) were inserted to 50 cm soil depth and respiration was measured both outside (control) and inside the trenched areas. The potential problems associated with the trenching treatment, increased decomposition of roots and ectomycorrhizal mycelia and changed soil moisture conditions, were handled by empirical modelling. The model was calibrated with respiration, moisture and temperature data of 2004 from the trenched plots as a training set. We estimate that over the first 5 months after the trenching, 45% of respiration from the trenched plots was an artefact of the treatment. Of this, 29% was a water difference effect and 16% resulted from root and mycelia decomposition. Autotrophic and heterotrophic respiration contributed to about 50% each of total soil respiration in the control plots averaged over the two growing seasons. We show that the potential problems with the trenching, decomposing roots and mycelia and soil moisture effects, can be handled by a modelling approach, which is an alternative to the sequential root harvesting technique.  相似文献   

18.
2009年9月至2010年4月非淹水期,在鄱阳湖南矶湿地国家级自然保护区,选择以灰化苔草为建群种的洲滩湿地,设置土壤-植物系统(TC)、剪除植物地上部分(TJ)2个试验处理(分别代表生态系统和土壤呼吸),利用密闭箱-气相色谱法测定了非淹水期鄱阳湖苔草湿地CO2释放通量.结果表明:苔草湿地生态系统呼吸与土壤呼吸均具有明显的季节变化模式,释放速率变化范围分别为89.57~1243.99和75.30~960.94mg CO2·m-2·h-1,土壤呼吸占生态系统呼吸的比例为64%(39%~84%);土壤温度是苔草湿地CO2通量的主要控制因子,可以解释呼吸速率80%以上的变异;生态系统呼吸与土壤呼吸的温度敏感性指数(Q10)分别为3.31和2.75,且冬季的Q10值明显高于春秋季节;土壤水分与CO2释放速率之间未达到显著相关;非淹水期,鄱阳湖苔草湿地是大气CO2的汇,其强度为1717.72 g C·m-2.  相似文献   

19.
Our understanding of the controls and magnitudes of regional CO2 exchanges in the Arctic are limited by uncertainties due to spatial heterogeneity in vegetation across the landscape and temporal variation in environmental conditions through the seasons. We measured daytime net ecosystem CO2 exchange and each of its component fluxes in the three major tundra ecosystem-types that typically occur along natural moisture gradients in the Canadian Low Arctic biweekly during the full snow-free season of 2004. In addition, we used a plant-removal treatment to compare the contribution of bulk soil organic matter to total respiratory CO2 loss among these ecosystems. Net CO2 exchange rates varied strongly, but not consistently, among ecosystems in the spring and summer phases as a result of ecosystem-specific and differing responses of gross photosynthesis and respiration to temporal variation in environmental conditions. Overall, net carbon gain was largest in the wet sedge ecosystem and smallest in the dry heath. Our measures of CO2 flux variation within each ecosystem were frequently most closely correlated with air or soil temperatures during each seasonal phase. Nevertheless, a particularly large rainfall event in early August rapidly decreased respiration rates and stimulated gross photosynthetic rates, resulting in peak rates of net carbon gain in all ecosystems. Finally, the bulk soil carbon contribution to total respiration was relatively high in the birch hummock ecosystem. Together, these results demonstrate that the relative influences of moisture and temperature as primary controls on daytime net ecosystem CO2 exchange and its component fluxes differ in fundamental ways between the landscape and ecosystem scales. Furthermore, they strongly suggest that carbon cycling responses to environmental change are likely to be highly ecosystem-specific, and thus to vary substantially across the low arctic landscape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
小兴安岭5种林型土壤呼吸时空变异   总被引:4,自引:0,他引:4  
史宝库  金光泽  汪兆洋 《生态学报》2012,32(17):5416-5428
原始阔叶红松林、谷地云冷杉林、阔叶红松择伐林、次生白桦林、人工落叶松林是小兴安岭乃至东北地区的重要森林类型。采用红外气体分析法比较测定了这几种森林类型的土壤呼吸及其相关环境因子,分析探讨了这几种森林类型土壤呼吸的时空变异。结果表明:各林型土壤呼吸与5 cm深土壤温度(T5)呈显著的指数相关,并且土壤呼吸与土壤温度、土壤湿度及其相互作用的回归模型可以解释各林型土壤呼吸约71%的季节变异。生长季平均土壤呼吸速率为次生白桦林(3.59μmolCO.2m-.2s-1)>谷地云冷杉林(3.52μmolCO.2m-.2s-1)>阔叶红松择伐林(3.44μmolCO.2m-.2s-1)>原始阔叶红松林(2.58μmolCO.2m-.2s-1)>人工落叶松林(2.29μmolCO.2m-.2s-1),说明土壤呼吸对原始阔叶红松林人为干扰的响应是不同的。各林型Q10值介于1.84(人工落叶松林)—2.32(次生白桦林)之间。在整个生长季,各林型之间土壤呼吸的变异系数变化幅度为19.74%—37.39%,而各林型内土壤环间其变化幅度为32.13%—60.20%,显著大于样地间的变化幅度14.28%—35.70%(P<0.001),说明土壤呼吸在细微尺度上的差异更大。土壤湿度可以解释各林型(阔叶红松林除外)内部土壤呼吸15.8%—33.5%的空间异质性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号