首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
G di Prisco  L Casola 《Biochemistry》1975,14(21):4679-4683
Structural differences between crystalline mitochondrial and nuclear glutamate dehydrogenases from ox liver have been detected by immunological techniques. Antisera prepared against each enzyme precipitate both glutamate dehydrogenases; upon immunodiffusion, the antiserum against the nuclear enzyme gives a line of incomplete identity with the two antigens, whereas the antiserum against the mitochondrial enzyme gives a line of complete identity. Fractionation of the antibodies contained in each antiserum by means of an immunoadsorbent, to which the nuclear or the mitochondrial enzyme has been covalently linked, shows that nuclear glutamate dehydrogenase (GDH) contains specific antigenic determinants as well as determinants common to the mitochondrial enzyme, whereas the latter appears to have no antigenic portions which are not present in the nuclear antigen, in accord with the results of immunodiffusion. The antibodies against determinants common to both enzymes precipitate and inhibit them, whereas the specific anti-nuclear GDH antibodies precipitate but do not inhibit the nuclear antigen.  相似文献   

2.
Nuclear glutamate dehydrogenase (EC 1.4.1.3) activity has been demonstrated in Chinese hamster ovary cells. Some characteristics of this enzyme have been examined and compared with those of the mitochondrial glutamate dehydrogenase from the same source. Differences were detected in the extent of the activation by inorganic phosphate, in the pH versus activity curves, in the affinity of the two enzymes for the cofactor NAD+ and in the electrophosretic mobility. A different rate of decay of the two enzymes has been observed in cells grown in the presence of chloramphenicol. Immunological studies show that, as in ox liver, the nuclear enzyme has specific antigenic determinants besides those in common with mitochondrial glutamate dehydrogenase. Finally, experiments of thermal inactivation indicate a higher stability of the mitochondrial enzyme.  相似文献   

3.
A study on the response of the stability and activity of crystalline ox liver nuclear and mitochondrial glutamate dehydrogenases to temperature variations has been carried out. The thermodynamic properties of the heat inactivation process and of the reaction with the substrates glutamate and α-ketoglutarate have been investigated. The heat inactivation of nuclear glutamate dehydrogenase proceeds at a faster rate than that of the mitochondrial enzyme in the temperature range 40–51 °C; the enthalpy of activation of the inactivation process is higher and the entropy is almost double, compared to the values of mitochondrial glutamate dehydrogenase. The effect of temperature on the maximal velocity shows that, with both glutamate and α-ketoglutarate, the enthalpy of activation with nuclear glutamate dehydrogenase is double and the decrease in entropy almost half of the values of the mitochondrial enzyme. The variation of the apparent Km with temperature shows a decrease of the affinity of both enzymes for glutamate, with no major difference in the thermodynamic properties of the reaction. With α-ketoglutarate, on the other hand, the affinity of nuclear glutamate dehydrogenase decreased, whereas that of the mitochondrial enzyme increased with temperature. The process is therefore exothermic with the former enzyme, endothermic with the latter; furthermore, it occurs with a decrease in enthropy with nuclear glutamate dehydrogenase, but with a large increase with the mitochondrial enzyme. The studies on the effect of temperature on the activity were carried out in the range 20–44 °C.  相似文献   

4.
The very high affinity for GTP of glutamate dehydrogenase was used to purify this enzyme by affinity chromatography. After periodic acid oxidation, GTP was covalently bound to an activated Sepharose. When crude mitochondrial extracts were applied on a column of this GTP-Sepharose, glutamate dehydrogenase was retained with very few other proteins. Glutamate dehydrogenase from rat liver was eluted with a KCl gradient with only one contaminating protein. From a pig heart mitochondrial extract the enzyme was purified 300-fold in one step. A chromatography on hydroxyapatite was sufficient to achieve the purification. This very simple technique avoids the long and troublesome crystallization steps generally involved in glutamate dehydrogenase purification.  相似文献   

5.
Highly purified preparations of glutamate dehydrogenase were obtained from mitochondrial and cytoplasmic fractions of rabbit liver by affinity chromatography on CL-Sepharose 4B modified by adenosine diphosphate. Some physico-chemical properties of the purified enzymes (e. g., specific activity, molecular weight, quaternary structure, stability against denaturating effect of urea, pH optimum of catalyzed reactions, Km values for substrates and coenzymes) were found to be identical. The sole difference was detected in the ability of enzyme preparations to be activated by adenosine diphosphate. The activation of the cytoplasmic enzyme is 160%, that of mitochondrial glutamate dehydrogenase is 230-240% under the same conditions.  相似文献   

6.
G Prisco  F Garofano 《Biochemistry》1975,14(21):4673-4679
Glutamate dehydrogenase have been obtained in crystalline form from purified ox liver nuclear fractions. The enzyme appeared homogeneous, as judged by several electrophoretic techniques at two pH values. A comparative study with the widely known ox liver mitochondrial glutamate dehydrogenase revealed several common features, such as the allosteric effect of the nucleotides ADP and GTP, the activation at high concentrations of the cofactor NAD+, and the existence of a concentration-dependent reversible monomer-polymer(s) equilibrium. However, the two enzymes differed in many other respects. Inorganic phosphate activated nuclear glutamate dehydrogenase to a much greater extent than the mitochondrial enzyme; the substrate NH4+ showed cooperative homotropic interactions only with nuclear glutamate dehydrogenase; kinetic differences were detected with most of the reaction substrates, as well as different rates of oxidative deamination of other L-amino acids, the nuclear enzyme had a higher anodic mobility and a different chromatographic behavior on anionic exchangers. The latter evidence indicates that the glutamate dehydrogenase activity in liver is associated with two proteins which are structurally different, thus confirming the results of a separate immunological study. Preliminary evidence suggests that the enzyme in nuclei is attached to the nuclear envelope, probably the inner membrane, from which it can be solubilized by the addition of salts.  相似文献   

7.
Yeast-mitochondrial methionyl-tRNA synthetase was purified 1060-fold from mitochondrial matrix proteins of Saccharomyces cerevisiae using a four-step procedure based on affinity chromatography (heparin-Ultrogel, tRNA(Met)-Sepharose, Agarose-hexyl-AMP) to yield to a single polypeptide of high specific activity (1800 U/mg). Like the cytoplasmic methionyl-tRNA synthetase (Mr 85,000), the mitochondrial isoenzyme is a monomer, but of significantly smaller polypeptide size (Mr 65,000). In contrast, the corresponding enzyme of Escherichia coli is a dimer (Mr 152,000) made up of identical subunits. The measured affinity constants of the purified mitochondrial enzyme for methionine and tRNA(Met) are similar to those of the cytoplasmic isoenzyme. However, the two yeast enzymes exhibit clearly different patterns of aminoacylation of heterologous yeast and E. coli tRNA(Met). Furthermore, polyclonal antibodies raised against the two proteins did not show any cross-reactivity by inhibition of enzymatic activity and by the highly sensitive immunoblotting technique, indicating that the two enzymes share little, if any, common antigenic determinants. Taken together, our results further support the belief that the yeast mitochondrial and cytoplasmic methionyl-tRNA synthetases are different proteins coded for by two distinct nuclear genes. Like the yeast cytoplasmic aminoacyl-tRNA synthetases, the mitochondrial enzymes displayed affinity for immobilized heparin. This distinguishes them from the corresponding enzymes of E. coli. Such an unexpected property of the mitochondrial enzymes suggests that they have acquired during evolution a domain for binding to negatively charged cellular components.  相似文献   

8.
Citrate, malate, and high levels of ATP dissociate the mitochondrial aspartate aminotransferase-glutamate dehydrogenase complex and have an inhibitory effect on the latter enzyme. These effects are opposed by Mg2+, leucine, Mg2+ plus ATP, and carbamyl phosphate synthase-I. In addition, Mg2+ directly facilitates formation of a complex between glutamate dehydrogenase and the aminotransferase and displaces the aminotransferase from the inner mitochondrial membrane which could enable it to interact with glutamate dehydrogenase in the matrix. Zn2+ also favors an aminotransferase-glutamate dehydrogenase complex. It, however, is a potent inhibitor of and has a high affinity for glutamate dehydrogenase. Leucine, however, enhances binding of Mg2+ and decreases binding of and the effect of Zn2+ on the enzyme. Thus, since both metal ions enhance enzyme-enzyme interaction and Zn2+ is a more potent inhibitor, the addition of leucine in the presence of both metal ions results in activation of glutamate dehydrogenase without disruption of the enzyme-enzyme complex. Furthermore, the combination of leucine plus Mg2+ produces slightly more activation than leucine alone. These results indicate that leucine, carbamyl phosphate synthase-I, and its substrate and cofactor, ATP and Mg2+, operate synergistically to facilitate glutamate dehydrogenase activity and interaction between this enzyme and the aminotransferase. Alternatively, Krebs cycle intermediates, such as citrate and malate, have opposing effects.  相似文献   

9.
A method to fractionate corn (Zea mays L. B73) mitochondria into soluble proteins, high molecular weight soluble proteins, and membrane proteins was developed. These fractions were analyzed by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and assays of mitochondrial enzyme activities. The Krebs cycle enzymes were enriched in the soluble fraction. Malate dehydrogenase has been purified from the soluble fraction by a two-step fast protein liquid chromatography method. Six different malate dehydrogenase peaks were obtained from the Mono Q column. These peaks were individually purified using a Phenyl Superose column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified peaks showed that three of the isoenzymes consisted of different homodimers (I, III, VI) and three were different heterodimers (II, IV, V). Apparent molecular masses of the three different monomer subunits were 37, 38, and 39 kilodaltons. Nondenaturing gel analysis of the malate dehydrogenase peaks showed that each Mono Q peak contained a band of malate dehydrogenase activity with different mobility. These observations are consistent with three nuclear genes encoding corn mitochondrial malate dehydrogenase. Polyclonal antibodies raised against purified malate dehydrogenase were used to identify the gene products using Western blots of two-dimensional gels.  相似文献   

10.
Cytoplasmic NAD-dependent malate dehydrogenase is decreased in activity in three transplantable mouse hepatomas compared to the activity of this enzyme in liver tissue. This enzyme is composed of several molecular forms of similar size which differ slightly in charge; the total activity and the discernible number of forms of the enzyme are decreased in both hepatoma and fetal liver. Mixing experiments suggest the absence of a significant quantity of unbound inhibitor of enzyme activity in the tumor or an activator in the liver. The liver cytoplasmic enzyme was purified to homogeneity by a relatively rapid method using Blue Sepharose affinity chromatography, which results in a good yield and high specific activity of the enzyme. Cytoplasmic and mitochondrial enzymes bind and elute differentially from this affinity resin. Molecular weight, kinetic constants and amino acid composition of the cytoplasmic enzyme were determined. Monospecific antiserum to the cytoplasmic enzyme has been produced in a goat and used to demonstrate a lack of immunological cross-reactivity between the mitochondrial and cytoplasmic enzyme. The tumor and liver cytoplasmic enzymes possess similar, if not identical, immunological determinants. Immunotitration experiments have been used to demonstrate that liver and hepatoma enzyme are identical in specific activity. Thus, the reduction in level of cytoplasmic enzyme in hepatoma is due to a decrease in the number of molecules per tissue mass.  相似文献   

11.
A new bifunctional affinity label, 5'-p-(fluorosulfonyl)benzoyl-8-azidoadenosine (5'-FSBAzA), has been synthesized by condensation of p-(fluorosulfonyl)benzoyl chloride with 8-azidoadenosine. 5'-FSBAzA has been characterized by elemental analysis, thin-layer chromatography, and ultraviolet and 1H NMR spectroscopy. The affinity label contains both an electrophilic fluorosulfonyl moiety and a photoactivatable azido group which are capable of reacting with several classes of amino acids found in enzymes. 5'-FSBAzA reacts with bovine liver glutamate dehydrogenase in a two-step process: a dark reaction yielding about 0.5 mol of the sulfonylbenzoyl-8-azidoadenosine (SBAzA) group bound/mol enzyme subunit by reaction of the enzyme at the fluorosulfonyl group, followed by photolysis in which 25% of the covalently bound SBAzA becomes crosslinked to the enzyme. 5'-FSBAzA-modified glutamate dehydrogenase, both before and after photolysis, retains full catalytic activity but is less sensitive to allosteric inhibition by GTP, to activation by ADP, and to inhibition by 1 mM NADH. These results suggest the modification in the dark reaction of a regulatory nucleotide binding site. Photoactivation of the covalently bound reagent may have general applicability in relating modified amino acids which are close to each other in the region of the purine nucleotide binding sites of glutamate dehydrogenase and other proteins.  相似文献   

12.
Glutamate dehydrogenase from pig kidney has been purified to homogeneity by means of affinity chromatography on matrix bound Cibacron Blue F3G-A and gel chromatography on Sepharose 6B. The enzyme exhibits allosteric properties with the substrates alpha-ketoglutarate, ammonium, and NADH, respectively. GTP is a strong inhibitor which strengthened the cooperative interactions between the ammonium binding sites. ADP as an activator relieves the inhibition by GTP. Like glutamate dehydrogenase from bovine liver, glutamate dehydrogenase from pig kidney shows the ability of self-association, too. The sedimentation coefficient increases from 13.5 S at 0.07 mg protein/ml to 19.4 S at 1.32 mg protein/ml. In the sodium dodecylsulphate gel electrophoresis the enzyme migrates as a single band with a molecular-weight at 51000.  相似文献   

13.
The intracellular localization of NADP-dependent glutamate dehydrogenase has been studied in Saccharomyces cerevisiae.Beside cytoplasmic GDH, enzyme activity has been found to be associated with the nuclear fraction in amounts comparable to those reported in nuclei of higher organisms.The yield and distribution of both GDH activities have been analyzed in mutants showing, under particular growth conditions, defective mitochondrial functions.  相似文献   

14.
Experiments performed in polyethylene glycol and with a divalent crosslinker indicate that both mitochondrial malate dehydrogenase and aspartate aminotransferase can form hetero enzyme—enzyme complexes with either glutamate dehydrogenase or citrate synthase. In general, these as previous results indicate that complexes with the aminotransferase are favored over those with malate dehydrogenase and complexes with glutamate dehydrogenase are favored over those with citrate synthase. When the levels of enzymes are low, the only detectable complex is between the aminotransferase and glutamate dehydrogenase. Under these conditions, palmitoyl-CoA is required for complexes between the other three enzyme pairs, however, palmitoyl-CoA also enhances interactions between glutamate dehydrogenase and the aminotransferase. DPNH disrupts complexes with malate dehydrogenase and has little effect on those with the aminotransferase, while oxalacetate disrupts complexes with citrate synthase but has little effect on those with glutamate dehydrogenase. The citrate synthase-aminotransferase complex was favored in the presence of DPNH plus malate, which disrupt the other three enzyme-enzyme complexes. Glutamate dehydrogenase has a higher affinity and capacity than citrate synthase for palmitoyl-CoA. Consequently, lower levels of palmitoyl-CoA are required to enhance interactions with glutamate dehydrogenase. Furthermore, glutamate dehydrogenase can compete with citrate synthase for palmitoyl-CoA and thus can prevent palmitoyl-CoA from enhancing interactions between citrate synthase and either malate dehydrogenase or the aminotransferase.  相似文献   

15.
When α-ketoglutarate is the substrate, malate is a considerably more effective inhibitor of glutamate dehydrogenase than glutamate, oxalacetate, aspartate, or glutarate. Malate is a considerably poorer inhibitor when glutamate is the substrate. Malate is competitive with α-ketoglutarate, uncompetitive with TPNH, and noncompetitive with glutamate. The above, plus the fact that malate is a considerably more potent inhibitor when TPNH rather than TPN is the coenzyme, indicates that malate is predominantly bound to the α-ketoglutarate site of the enzyme-TPNH complex and has a considerably lower affinity for the enzyme-TPN complex. Ligands which decrease binding of TPNH to the enzyme such as ADP and leucine markedly decrease inhibition by malate. Conversely, GTP, which increases binding of TPNH to the enzyme also enhances inhibition by malate. Malate also decreases interaction between mitochondrial aspartate aminotransferase and glutamate dehydrogenase. This effect of malate on enzyme-enzyme interaction is enhanced by DPNH and GTP which also increase inhibition of glutamate dehydrogenase by malate and is decreased by TPN, ADP, ATP, α-ketoglutarate, and leucine which decrease inhibition of glutamate dehydrogenase by malate. These results indicate that malate could decrease α-ketoglutarate utilization by inhibiting glutamate dehydrogenase and retarding transfer of α-ketoglutarate from the aminotransferase to glutamate dehydrogenase. These effects of malate would be most pronounced when the mitochondrial level of α-ketoglutarate is low and the level of malate and reduced pyridine nucleotide is high.  相似文献   

16.
Using affinity chromatography of F-actin-sepharose 4B, the ability of proteins from rat liver submitochondrial fractions to interact with rabbit skeletal muscle actin was studied. The bulk of the actin-bound components was detected in the soluble compartments of the mitochondria, i.e., mitochondrial matrix and intermembrane space. The interaction was predominantly weak, since the desorption of the proteins from the column occurred at increased ionic strength of the solution. In membrane fractions, four polypeptides with Mr 65 000, 62 000, 59 000 and 10 500 eluting from the column only under effects of denaturating agents were predominant, thus suggesting the specificity of their binding to the immobilized actin. In a model system involving mitochondrial enzyme preparations (cytochrome c, glutamate dehydrogenase, isocitrate dehydrogenase, catalase), the possibility of their adsorption of F-actin-sepharose was investigated. It was shown that the highest adsorption capacity was observed in the case of immobilized actin with respect to catalase, the lowest one-to glutamate dehydrogenase. The data obtained suggest that the interaction of the actin-like mitochondrial protein with the system of solubilized enzymes may serve as a basis for their normal functioning.  相似文献   

17.
Carbamyl phosphate synthase-I and glutamate dehydrogenase both form a complex with mitochondrial aspartate aminotransferase. Instead of these two enzymes competing for the aminotransferase, carbamyl phosphate synthase-I enhances glutamate dehydrogenase-aminotransferase interaction. This suggests that a complex can be formed between all three enzymes. Since this complex is stable in the presence of substrates and modifiers of the three enzymes, it could conceivably convert NH4+ produced from aspartate into carbamyl phosphate. Furthermore, since carbamyl phosphate synthase-I is the predominant protein in liver mitochondria, it could play a major role in placing the aminotransferase and glutamate dehydrogenase in close proximity. Malate removes glutamate dehydrogenase from the tri-enzyme complex and thus could play a role in determining whether glutamate dehydrogenase interacts with carbamyl phosphate synthase-I or is available to participate in reactions with the Krebs cycle. Palmitoyl-CoA has a high affinity for both carbamyl phosphate synthase-I and glutamate dehydrogenase. ATP and malate which, respectively, decrease and enhance binding of palmitoyl-CoA to glutamate dehydrogenase, respectively decrease and enhance the ability of this enzyme to compete with carbamyl phosphate synthase-I for palmitoyl-CoA. Since carbamyl phosphate synthase-I is present in high levels in liver mitochondria and has a high affinity for palmitoyl-CoA, it could play a major role as a reservoir for palmitoyl-CoA.  相似文献   

18.
Polyclonal antisera were prepared against ferredoxin-nitrite reductase (EC 1.7.7.1) and ferredoxin-glutamate synthase (glutamate synthase (ferredoxin); EC 1.4.7.1) from the green algaChlamydomonas reinhardtii. The anti-glutamate synthase antibodies recognized both glutamate synthase and nitrite reductase, but inhibited only the ferredoxin-linked activity of the latter enzyme and not the activity dependent on methyl viologen. Analogously, the anti-nitrite reductase antibodies recognized glutamate synthase and nitrite reductase but the first enzyme was only poorly inhibited. Free ferredoxin protected the nitrite reductase against its inactivation by anti-glutamate synthase antibodies. These results indicate that the ferredoxin-dependent glutamate synthase and nitrite reductase from this alga share common antigenic determinants, and that these are located at the ferrodoxin-binding domains.  相似文献   

19.
20.
Seven monoclonal antibodies were produced against soybean nodule xanthine dehydrogenase, an enzyme involved in ureide synthesis. Specificity of the seven monoclonal antibodies for xanthine dehydrogenase was demonstrated by immunopurifying the enzyme to homogeneity from a crude nodule extract using antibodies immobilized to Sepharose 4B beads. Each monoclonal antibody was covalently bound to Sepharose 4B beads for the preparation of immunoaffinity columns for each antibody. All seven antibodies were found to be of the IgG1,K subclass. A competitive, indirect enzyme-linked immunosorbent assay demonstrated that two of the seven antibodies shared a common epitope while the remaining five antibodies defined unique determinants on the protein. Rapid, large scale purification of active xanthine dehydrogenase to homogeneity was performed by immunoaffinity chromatography. The presence of xanthine dehydrogenase activity and protein in every organ of the soybean plant was determined. Crude extracts of nodules, roots, stems, and leaves cross-reacted with all seven monoclonal antibodies in an indirect enzyme-linked immunosorbent assay. A positive correlation was observed between the degree of cross-reactivity of a given organ and the level of enzyme activity in that organ. These data demonstrate that xanthine dehydrogenase is not nodule specific. Antigenic variability of xanthine dehydrogenase present in crude extracts from nodules of soybean, wild soybean, cowpea, lima bean, pea, and lupin were detected in the indirect enzyme-linked immunosorbent assay which corresponded to six binding patterns for xanthine dehydrogenase from these plant species. These results correspond well with the epitope determination data which showed that the seven antibodies bind to six different binding determinants on the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号