共查询到20条相似文献,搜索用时 15 毫秒
1.
A phylogeny of the species of the nase genus Chondrostoma was constructed from a complete mitochondrial cytochrome b gene (1140 bp). Molecular phylogeny was used to revise the current systematics of this group, and to infer a biogeographical model of the Mediterranean area during the Cenozoic period. We confirmed the monophyly of the genus Chondrostoma, and defined seven different lineages within it: Polylepis, Arcasii, Lemmingii, Toxostoma, Nasus, C. genei, and C. soetta. The separation of main lineages within Chondrostoma occurred in the Middle-Upper Miocene, approximately 11 million years ago, while the greatest species radiation took place in the Pliocene close to the time the current drainages system were created. It is unlikely that this genus experienced an extensive dispersal during the Messinian, in the Lago-Mare Phase. Given the level of current knowledge, a biogeographical model constructed on the basis of vicariant events seems more realistic than does a dispersalist model. 相似文献
2.
Molecular phylogenetic relationships of Eastern Asian Cyprinidae (Pisces: Cypriniformes) inferred from cytochrome b sequences 总被引:12,自引:0,他引:12
Cyprinidae, the largest fish family, comprises ap-proximately 210 recognized genera and 2010 species that are distributed widely in Eurasia, East Indian Is-land, Africa, and North America[1]. Species richness of this family is the greatest in East Asia, for example, China has 122 genera and more than 600 species. It is difficult to build a comprehensive phylogeny of Cy-prinidae due to the large number of genera and species. The classification of this family has been subject to revisions an… 相似文献
3.
Pramuk JB Grose MJ Clarke AL Greenbaum E Bonaccorso E Guayasamin JM Smith-Pardo AH Benz BW Harris BR Siegfreid E Reid YR Holcroft-Benson N Wiley EO 《Molecular phylogenetics and evolution》2007,42(2):287-297
We infer the phylogenetic relationships of finescale shiners of the genus Lythrurus, a group of 11 species of freshwater minnows widely distributed in eastern North America, using DNA sequences from the ND2 (1047 bp), ATPase8 and 6 (823 bp), and ND3 (421 bp) mitochondrial protein-coding genes. The topologies resulting from maximum parsimony, Bayesian, and maximum likelihood tree building methods are broadly congruent, with two distinct clades within the genus: the L. umbratilis clade (L. umbratilis + L. lirus + (L. fasciolaris + (L. ardens, L. matutinus))) and the L. bellus clade (L. fumeus + L. snelsoni + (L. roseipinnis + (L. atrapiculus + (L. bellus, L. algenotus)))). Support is weak at the base of several clades, but strongly supported nodes differ significantly from prior investigations. In particular, our results confirm and extend earlier studies recovering two clades within Lythrurus corresponding to groups with largely "northern" and "southern" geographic distributions. Several species in this genus are listed in the United States as threatened or of special concern due to habitat degradation or limited geographic ranges. In this study, populations assigned to L. roseipinnis show significant genetic divergence suggesting that there is greater genetic diversity within this species than its current taxonomy reflects. A full accounting of the biodiversity of the genus awaits further study. 相似文献
4.
Phylogenetic relationships of thorny catfishes (Siluriformes: Doradidae) inferred from molecular and morphological data 总被引:4,自引:0,他引:4
GREGORY R. MOYER BROOKS M. BURR CAREY KRAJEWSKI 《Zoological Journal of the Linnean Society》2004,140(4):551-575
Doradidae is a putatively monophyletic group of South American freshwater catfishes containing 30 extant genera and 72 valid species. Only one study to date has attempted to estimate phylogenetic relationships among doradids. This morphological analysis partitioned species into two basal genera ( Wertheimeria and Francisodoras ) and a crown group of three subfamilies (Platydoradinae, Astrodoradinae and Doradinae) whose relationships were unresolved. No subsequent work has been done to resolve the subfamilial trichotomy or to assess whether postulated intergeneric relationships are accurate. We address this problem with complete sequences (2.5 kilobases, kb) of mitochondrial 12S and 16S rRNA genes and partial (1.3 kb) sequences of the nuclear elongation factor-1 alpha (EF1α) gene from representatives of 23 doradid genera (43 species) and 13 outgroups from additional siluriform families. Phylogenetic analysis of these data yields strong support for the monophyly of Doradidae and Astrodoradinae (as well as other relationships), but otherwise shows significant conflict with morphological results. A partial re-examination of published morphological data indicates that many characters may have been incorrectly polarized and many taxa have incorrect state assignments. Our results provide a framework for ongoing efforts to describe the species-level diversity of this poorly understood neotropical family. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 551–575. 相似文献
5.
6.
Phylogenetic relationships within Serpulidae (Sabellida, Annelida) inferred from molecular and morphological data 总被引:2,自引:0,他引:2
We assessed phylogenetic relationships within Serpulidae (including Spirorbinae) using parsimony and Bayesian analyses of 18S rDNA, the D1 and D9−D10 regions of 28S rDNA, and 38 morphological characters. In total, 857 parsimony informative characters were used for 31 terminals, 29 serpulids and sabellid and sabellariid outgroups. Following ILD assessment the two sequence partitions and morphology were analysed separately and in combination. The morphological parsimony analysis was congruent with the results of the 2003 preliminary analysis by Kupriyanova in suggesting that a monophyletic Serpulinae and Spirorbinae form a clade, while the remaining serpulids form a basal grade comprising what are normally regarded as Filograninae. Bremer support values were, however, quite low throughout. In contrast, the combined analyses of molecular and morphological data sets provided highly resolved and well-supported trees, though with some conflict when compared to the morphology-only analysis. Spirorbinae was recovered as a sister group to a monophyletic group comprising both 'filogranin' taxa ( Salmacina , Filograna , Protis , and Protula ) and 'serpulin' taxa such as Chitinopoma , Metavermilia , and Vermiliopsis . Thus the traditionally formulated subfamilies Serpulinae and Filograninae are not monophyletic. This indicates that a major revision of serpulid taxonomy is needed at the more inclusive taxonomic levels. We refrain from doing so based on the present analyses since we feel that further taxon sampling and molecular sequencing are required. The evolution of features such as the operculum and larval development are discussed. 相似文献
7.
The 28S rDNA from nine species of the genus Syphacia collected in Japan was sequenced, and the phylogenetic relationship was inferred from multiple sequence alignment of 28S rDNA by the MAFFT program. Phylogenetic tree indicates that S. petrusewiczi, which was the only species belonging to the subgenus Seuratoxyuris, has diverged earlier than other rodent pinworms examined and was distantly separated from the others genetically. It was revealed that S. agraria and S. vandenbrueli, whose subgeneric status has not been specified, belonged to the subgenus Syphacia together with other 6 species. Syphacia montana from Clethrionomys, Eothenomys and Microtus was very closely related to S. obvelata from Mus, and that S. frederici from Apodemus and S. vandenbrueli from Micromys were comparatively closely related to the former two species. The phylogenetic relationship among the three species of Syphacia found in Japanese Apodemus was inconsistent with the biogeography of host rodents. The co-evolutionary relationship between pinworm species and their host rodents may not be so strict and host switching has probably occurred frequently during the course of evolution. 相似文献
8.
Levin BA Freyhof J Lajbner Z Perea S Abdoli A Gaffaroğlu M Ozuluğ M Rubenyan HR Salnikov VB Doadrio I 《Molecular phylogenetics and evolution》2012,62(1):542-549
We reconstructed the matrilineal phylogeny of Asian algae-eating fishes of the genus Capoeta based on complete mitochondrial gene for cytochrome b sequences obtained from 20 species sampled from the majority of the range and 44 species of closely related barbs of the genera Barbus s. str. and Luciobarbus. The results of this study show that Capoeta forms a strongly supported monophyletic subclade nested within the Luciobarbus clade, suggesting that specialized scraping morphology appeared once in the evolutionary history of the genus. We detected three main groups of Capoeta: the Mesopotamian group, which includes three species from the Tigris-Euphrates system and adjacent water bodies, the Anatolian-Iranian group, which has the most diversified structure and encompasses many species distributed throughout Anatolian and Iranian inland waters, and the Aralo-Caspian group, which consists of species distributed in basins of the Caspian and Aral Seas, including many dead-end rivers in Central Asia and Northern Iran. The most probable origination pathway of the genus Capoeta is hypothesized to occur as a result of allopolyploidization. The origin of Capoeta was found around the Langhian-Serravallian boundary according to our molecular clock. The diversification within the genus occurred along Middle Miocene-Late Pliocene periods. 相似文献
9.
The family Cyprinidae is widely distributed in East Asia, and has the important phylogenetic signifi- cance in the fish evolution. In this study, the 5′ end partial sequences (containing exon 1, exon 2 and indel 1) of S6K1 gene were obtained from 30 representative species in Cyprinidae and outgroup using PCR amplification and sequencing. The phylogenetic relationships of Cyprinidae were reconstructed with neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian meth- ods. Myxocyprinus asiaticus (Catostomidae) was assigned to the outgroup taxon. Similar phylogenetic relationships within the family Cyprinidae were achieved with the four analyses. Leuciscini and Barbini were monophyletic lineages respectively with the high nodal supports. Leuciscini comprises Hy- pophthalmichthyinae, Xenocyprinae, Cultrinae, Gobioninae, Acheilognathinae and East Asian species of Leuciscinae and Danioninae. Monophyly of East Asian clade was supported with high nodal support. Barbini comprises Schizothoracinae, Barbinae, Cyprininae and Labeoninae. The monophyletic lineage consisting of Danio rerio, D. myersi, and Rasbora trilineata was basal in the tree. In addition, the large fragment indels in intron 1 were analyzed to improve the understanding of Cyprinidae relationships. The results showed that the large fragment indels were correlated with the relations among species. Some conserved regions in intron 1 were thought to be involved in the functional regulation. However, no correlation was found between sequence variations and species characteristic size. 相似文献
10.
Molecular phylogeny of Sinocyclocheilus (Cypriniformes: Cyprinidae) inferred from mitochondrial DNA sequences 总被引:8,自引:0,他引:8
Xiao H Chen SY Liu ZM Zhang RD Li WX Zan RG Zhang YP 《Molecular phylogenetics and evolution》2005,36(1):67-77
More than 10 species within the freshwater fish genus Sinoncyclocheilus adapt to caves and show different degrees of degeneration of eyes and pigmentation. Therefore, this genus can be useful for studying evolutionary developmental mechanisms, role of natural selection and adaptation in cave animals. To better understand these processes, it is indispensable to have background knowledge about phylogenetic relationships of surface and cave species within this genus. To investigate phylogenetic relationships among species within this genus, we determined nucleotide sequences of complete mitochondrial cytochrome b gene (1140 bp) and partial ND4 gene (1032 bp) of 31 recognized ingroup species and one outgroup species Barbodes laticeps. Phylogenetic trees were reconstructed using maximum parsimony, Bayesian, and maximum likelihood analyses. Our phylogenetic results showed that all species except for two surface species S. jii and S. macrolepis clustered as five major monophyletic clades (I, II, III, IV, and V) with strong supports. S. jii was the most basal species in all analyses, but the position of S. macrolepis was not resolved. The cave species were polyphyletic and occurred in these five major clades. Our results indicate that adaptation to cave environments has occurred multiple times during the evolutionary history of Sinocyclocheilus. The branching orders among the clades I, II, III, and IV were not resolved, and this might be due to early rapid radiation in Sinocyclocheilus. All species distributed in Yunnan except for S. rhinocerous and S. hyalinus formed a strongly supported monophyletic group (clade V), probably reflecting their common origins. This result suggested that the diversification of Sinocyclocheilus in Yunnan may correlate with the uplifting of Yunnan Plateau. 相似文献
11.
The New World endemic genus Zeltnera consists of 25 species mainly distributed in the western part of the United States and Mexico. Chromosome counts performed on 113 populations (24 species) reveal extensive congruence between chromosomal groups and the assemblages obtained from analyses of nuclear ribosomal DNA (ITS) and chloroplast DNA (trnL intron and trnL-F intergenic spacer) sequences. Karyological and molecular data sets support three main biogeographic groups for Zeltnera. A first and mainly unresolved cluster (n = 17 and n = 20) occurs in California, whereas two other clades are centered in the Texas region (n = 20 and n = 21) and in Mexico (n = 21 and n = 22). Under the assumption of a molecular clock, and using both dispersal and vicariance explanations for the current distribution of the respective species, the genus is thought to have a North American origin with considerable diversification in the early Pliocene (ca. 5 million years ago). Geological events, such as desert formation and mountain orogenies, have created insuperable barriers that today separate the three major and likely vicariant groups. 相似文献
12.
Silvia Perea Madelaine Böhme Primož Zupančič Jörg Freyhof Radek Šanda Müfit Özuluğ Asghar Abdoli Ignacio Doadrio 《BMC evolutionary biology》2010,10(1):265
Background
Leuciscinae is a subfamily belonging to the Cyprinidae fish family that is widely distributed in Circum-Mediterranean region. Many efforts have been carried out to deciphering the evolutionary history of this group. Thus, different biogeographical scenarios have tried to explain the colonization of Europe and Mediterranean area by cyprinids, such as the "north dispersal" or the "Lago Mare dispersal" models. Most recently, Pleistocene glaciations influenced the distribution of leuciscins, especially in North and Central Europe. Weighing up these biogeographical scenarios, this paper constitutes not only the first attempt at deciphering the mitochondrial and nuclear relationships of Mediterranean leuciscins but also a test of biogeographical hypotheses that could have determined the current distribution of Circum-Mediterranean leuciscins. 相似文献13.
Phylogenetic relationships within the Alcidae (Charadriiformes: Aves) inferred from total molecular evidence 总被引:3,自引:1,他引:3
The Alcidae is a unique assemblage of Northern Hemisphere seabirds that
forage by "flying" underwater. Despite obvious affinities among the
species, their evolutionary relationships are unclear. We analyzed
nucleotide sequences of 1,045 base pairs of the mitochondrial cytochrome b
gene and allelic profiles for 37 allozyme loci in all 22 extant species.
Trees were constructed on independent and combined data sets using maximum
parsimony and distance methods that correct for superimposed changes.
Alternative methods of analysis produced only minor differences in
relationships that were supported strongly by bootstrapping or standard
error tests. Combining sequence and allozyme data into a single analysis
provided the greatest number of relationships receiving strong support.
Addition of published morphological and ecological data did not improve
support for any additional relationship. All analyses grouped species into
six distinct lineages: (1) the dovekie (Alle alle) and auks, (2)
guillemots, (3) brachyramphine murrelets, (4) synthliboramphine murrelets,
(5) true auklets, and (6) the rhinoceros auklet (Cerorhinca monocerata) and
puffins. The two murres (genus Uria) were sister taxa, and the black
guillemot (Cepphus grylle) was basal to the other guillemots. The Asian
subspecies of the marbled murrelet (Brachyramphus marmoratus perdix) was
the most divergent brachyramphine murrelet, and two distinct lineages
occurred within the synthliboramphine murrelets. Cassin's auklet
(Ptychoramphus aleuticus) and the rhinoceros auklet were basal to the other
auklets and puffins, respectively, and the Atlantic (Fratercula arctica)
and horned (Fratercula corniculata) puffins were sister taxa. Several
relationships among tribes, among the dovekie and auks, and among the
auklets could not be resolved but resembled "star" phylogenies indicative
of adaptive radiations at different depths within the trees.
相似文献
14.
Abstract. The phylogenetic relationships within the Order Aplousobranchiata (Ascidiacea) are largely unexplored. In this work, we study the phylogenetic status of the genera Clavelina and Pycnoclavella. Traditionally, both genera had been included in the family Clavelinidae, until the new family Pycnoclavellidae was defined, removing the genus Pycnoclavella from Clavelinidae. Not all authors accept the validity of Clavelina and Pycnoclavella as distinct genera, let alone their belonging to different families. In addition, the assignment of species to these genera, as well as to the genus Archidistoma , has been controversial. We analyzed sequences of the mitochondrial gene cytochrome c oxidase subunit I belonging to ten species of Pycnoclavella (including several formerly assigned to Archidistoma and Clavelina ), 11 species of Clavelinidae, and ten species of other aplousobranch genera belonging to seven families, plus two outgroups. Two different tree construction methods (maximum likelihood and Bayesian inference) showed similar results. Pycnoclavella and Clavelina appeared in distinct clades but formed a monophyletic group relative to representatives of the main families of the order Aplousobranchiata. Our phylogenetic results indicate that both genera are valid but should be included within a single family, with the name Clavelinidae having precedence. The monotypic clavelinid genus Nephtheis branches in our trees within the clade of the genus Clavelina. Our results also confirm that some forms assigned to Archidistoma and Clavelina have been misplaced and belong to the genus Pycnoclavella. Pycnoclavella martae n.sp. is described. 相似文献
15.
The genus Chamaecyparis comprises five species and one variety native to Taiwan, Japan, Canada, and USA, which demonstrates a classical eastern Asian, western North American, and eastern North American disjunct distributional pattern. The phylogenetic relationships of the species of Chamaecyparis were inferred by comparing 1130 bp of the combined data set of chloroplast trnV intron and petG-trnP intergenic spacer. The phylogenetic tree shows that Chamaecyparis nootkatensis (Cupressus nootkatensis or Xanthocyparis nootkatensis) is clearly diverged from other Chamaecyparis species. For Chamaecyparis species, C. thyoides is sister to C. formosensis and C. pisifera and these together form a monophyletic group. C. lawsoniana is sister to C. obtusa and C. taiwanensis; and these form another monophyletic group. Homogeneity in evolutionary rates was found among species in these two monophyletic groups. Results indicate the divergent evolution of C. taiwanensis and C. formosensis and molecular evidence in this investigation supports C. taiwanensis as a variety of C. obtusa. Utility of cpDNA intergenic spacer petG-trnP in Chamaecyparis is also discussed. Several biogeographical implications were inferred: (1) at least two divergence events have produced the eastern Asian, and both western and eastern North American disjunct distribution in Chamaecyparis; (2) intercontinental sister species pairs are found in Chamaecyparis; (3) cpDNA divergence between two intercontinental sister pairs of C. thyoides and C. pisifera, and C. lawsoniana and C. obtusa is 2.8% and 1.1%, which suggest an estimated divergence time of 14 and 5.5 million years ago during middle and late Miocene, respectively; (4) cpDNA divergence of two Asian Chamaecyparis groups between C. obtusa and C. taiwanensis, and between C. pisifera and C. formosensis is 0.25% and 0.57%, which suggest an estimated divergence time of 1.3 and 2.9 million years ago during Pleistocene and late Pliocene, respectively; these estimated divergence times suggest a relatively recent migration of Chamaecyparis to Taiwan from the Japanese Archipelago; (5) that climatic deterioration caused the disappearance of Chamaecyparis in continental Asia is probable. 相似文献
16.
SUSANA SCHÖNHUTH IGNACIO DOADRIO 《Biological journal of the Linnean Society. Linnean Society of London》2003,80(2):323-337
We conducted phylogenetic analyses based on complete mitochondrial cytochrome b gene sequences among southern and central Mexican cyprinid species, included in the genera Notropis and Hybopsis. In addition 15 northern species of the genera Notropis and Hybopsis were included in the analyses in order to place the Mexican species into a larger phylogenetic framework. The phylogenetic relationships supported the existence of five major clades: (1) including species of the subgenus Alburnops of the genus Notropis plus N. shumardi; (2) species of the subgenus Notropis; (3) species of the genus Hybopsis; (4) species of the N. texanus + N. volucellus species group of the genus Notropis; (5) Mexican endemic species of the genus Notropis plus the genus Yuriria. Previous phylogenetic inferences based on morphological characters resolved the Mexican minnows analysed as N. sallaei, N. calientis, N. boucardi and Y. alta, non‐monophyletic. According to our cytochrome b evidence all Mexican minnows of the genera Notropis and Yuriria formed a monophyletic group with respect to the northern species of the genera Notropis and Hybopsis. Within the Mexican clade, three well‐supported clades were identified: the first included the closely related species N. moralesi and N. boucardi, which occur in three independent drainages of south Mexico; the second consisted of two different lineages, N. imeldae and an undescribed species of Notropis, inhabiting two independent drainages of south Mexico; the third comprised two central Mexican Notropis species (N. calientis and N. sallaei) and the Y. alta populations. Based on this study and pending a more extensive taxonomic revision of the genus Notropis, we adopt the conservative criterion of considering all Notropis species from southern and central Mexico examined, including Y. alta, as belonging to the genus Notropis. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 323–337. 相似文献
17.
Three nominal species are known in East Asian balitorid loaches of the genus Lefua, i.e. L. echigonia, L. nikkonis, and L. costata. Lefua echigonia, with large morphological variations was recently separated into two groups, L. echigonia including the holotype and L. sp., based on morphological and ecological traits. We performed protein and DNA analyses to elucidate phylogenetic relationships among loaches of the genus Lefua and to settle the taxonomic status of L. sp. We also investigated intraspecific variations in L. echigonia s. str. to shed light on the process of formation of freshwater fish fauna in Japan. Protein analyses using two-dimensional gel electrophoresis showed that genetic distances between L. sp. and L. echigonia s. str. and between L. sp. and L. nikkonis were as large as that between L. echigonia s. str. and L. nikkonis. DNA analyses of the mitochondrial D-loop region showed that L. sp. and L. echigonia s. str. were monophyletic, respectively, while neither L. nikkonis nor L. costata was monophyletic and these species formed together a clade. The results supported the specific status of L. sp. and proposed reevaluation of the taxonomic status of L. nikkonis and L. costata. DNA analyses also showed that L. sp. was more closely related to L. echigonia s. str. than to the L. nikkonis-L. costata complex, and four local populations were distinguished in L. echigonia s. str. Distribution patterns of the four local populations of L. echigonia s. str. in Japan were approximately congruent with those of the medaka, Oryzias latipes, suggesting that differentiation in the two distantly related fishes have a common historical background. 相似文献
18.
The superfamily Cobitoidea of the order Cypriniformes is a diverse group of fishes, inhabiting freshwater ecosystems across Eurasia and North Africa. The phylogenetic relationships of this well-corroborated natural group and diverse clade are critical to not only informing scientific communities of the phylogeny of the order Cypriniformes, the world's largest freshwater fish order, but are key to every area of comparative biology examining the evolution of traits, functional structures, and breeding behaviors to their biogeographic histories, speciation, anagenetic divergence, and divergence time estimates. In the present study, two mitochondrial gene sequences (COI, ND4+5) and four single-copy nuclear gene segments (RH1, RAG1, EGR2B, IRBP) were used to infer the phylogenetic relationships of the Cobitoidea as reconstructed from maximum likelihood (ML) and partitioned Bayesian Analysis (BA). Analyses of the combined mitochondrial/nuclear gene datasets revealed five strongly supported monophyletic Cobitoidea families and their sister-group relationships: Botiidae+(Vaillantellidae+(Cobitidae+(Nemacheilidae+Balitoridae))). These recovered relationships are in agreement with previous systematic studies on the order Cypriniformes and/or those focusing on the superfamily Cobitoidea. Using these relationships, our analyses revealed pattern lineage- or ecological-group-specific evolution of these genes for the Cobitoidea. These observations and results corroborate the hypothesis that these group-specific-ancestral ecological characters have contributed in the diversification and/or adaptations within these groups. Positive selections were detected in RH1 of nemacheilids and in RAG1 of nemacheilids and genus Vaillantella, which indicated that evolution of RH1 (related to eye's optic sense) and RAG1 (related to immunity) genes appeared to be important for the diversification of these groups. The balitorid lineage (those species inhabiting fast-flowing riverine habitats) had, as compared with other cobitoid lineages, significantly different dN/dS, dN and dS values for ND4 and IRBP genes. These significant differences are usually indicative of weaker selection pressure, and lineage-specific evolution on genes along the balitorid lineage. Furthermore, within Cobitoidea, excluding balitorids, species living in subtropics had significantly higher dN/dS values in RAG1 and IRBP genes than those living in temperate and tropical zones. Among tropical cobitoids, genes COI, ND5, EGR2B, IRBP and RH1, had a significantly higher mean dS value than those species in subtropical and temperate groups. These findings suggest that the evolution of these genes could also be ecological-group-specific and may have played an important role in the adaptive evolution and diversification of these groups. Thus, we hypothesize that the genes included in the present study were actively involved in lineage- and/or ecological-group-specific evolutionary processes of the highly diverse Cobitoidea. These two evolutionary patterns, both subject to further testing, are hypothesized as integral in the diversification with this major clade of the world's most diverse group of freshwater fishes. 相似文献
19.
The species differentiation between Chamaecyparis formosensis, C. obtusa var. formosana, and C. obtusa, based on the composition of the leaf essential oils, was studied. The characterization of the oils by GC-FID and GC/MS analyses showed remarkable differences between these three essential oils. Cluster analysis (CA) and principal-component analysis (PCA) distinguished three groups of essential oils. The C. formosensis oil was dominated by α-pinene while those isolated from C. obtusa var. formosana and C. obtusa were characterized by high levels of (-)-thujopsene and α-terpinyl acetate, respectively. Moreover, the phylogenetic relationships of the genus Chamaecyparis were in agreement with previous findings based on morphological and molecular evidence. In addition, the essential oils from C. obtusa var. formosana could be classified into three chemical types, according to their different characteristic main compounds (β-elemol, (-)-thujopsene, and cis-thujopsenal). The biochemical correlations between the major constituents of the Chamaecyparis species were examined and their relationship is discussed. 相似文献
20.
Phylogenetic relationships within Fagonia were inferred from analyses of plastid trnL intron and nuclear ribosomal ITS DNA sequences. Sampling of the genus was nearly complete, including 32 of 34 species. Phylogenetic analysis was carried out using parsimony, and Bayesian model averaging. The latter method allows model-based inference while accounting for model-selection uncertainty, and is here used for the first time in phylogenetic analyses. All species of Fagonia in the Old World, except F. cretica, form a weakly supported clade, and all Fagonia species of the New World, except F. scoparia, are well supported as sister to the Old World clade. Fagonia scoparia, from Mexico, and F. cretica, from Northern Africa, are well supported as sisters to all other Fagonia species. Vicariance-dispersal analysis, using DIVA, indicated that the occurrences of Fagonia in South America and southern Africa are due to dispersals, and also, that the ancestor of Fagonia had a distribution compatible with the boreotropics hypothesis. 相似文献