首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Next to their natural electron transport capacities, c-type cytochromes possess low peroxidase and cytochrome P-450 activities in the presence of hydrogen peroxide. These catalytic properties, in combination with their structural robustness and covalently bound cofactor make cytochromes c potentially useful peroxidase mimics. This study reports on the peroxidase activity of cytochrome c-550 from Paracoccus versutus and the loss of this activity in presence of H2O2. The rate-determining step in the peroxidase reaction of cytochrome c-550 is the formation of a reactive intermediate, following binding of peroxide to the haem iron. The reaction rate is very low compared to horseradish peroxidase (approximately one millionth), because of the poor accessibility of the haem iron for H2O2, and the lack of a base catalyst such as the distal His of the peroxidases. This is corroborated by the linear dependence of the reaction rate on the peroxide concentration up to at least 1 M H2O2. Steady-state conversion of a reducing substrate, guaiacol, is preceded by an activation phase, which is ascribed to the build-up of amino-acid radicals on the protein. The inactivation kinetics in the absence of reducing substrate are mono-exponential and shown to be concurrent with haem degradation up to 25 mM H2O2 (pH 8.0). At still higher peroxide concentrations, inactivation kinetics are biphasic, as a result of a remarkable protective effect of H2O2, involving the formation of superoxide and ferrocytochrome c-550.  相似文献   

2.
The synthesis, characterization and comparative biological study of a series of antibacterial copper complexes with heterocyclic sulfonamides were reported. Two kinds of complexes were obtained with the stoichiometries [Cu(L)2] . H2O and [Cu(L)2(H2O)4] . nH2O. They were characterized by infrared and electronic spectroscopies and the crystal structure of [Cu(sulfisoxazole)2(H2O)4] . 2H2O was determined by single crystal X-ray diffraction. It crystallized in the C2/c with Z = 8 monoclinic space group C2/c with Z = 8. The Cu(II) is in a slightly tetragonal distorted octahedron formed by four oxygen atoms from water molecules and two nitrogen atoms from two isoxazole rings. The antimicrobial activity was evaluated for all the synthesized complexes and ligands using the agar dilution test. The results showed that the complexes with five-membered heterocyclic rings were more active than the free sulfonamides while the pyrimidine, pyridine and pyridazine complexes had similar or less activity than the free ligands. In order to find an explanation for this behavior lipophilicity and superoxide dismutase-like activity were tested, showing that the [Cu(sulfamethoxazol)2(H2O)4] . 3H2O presented the highest antimicrobial potency and a superoxide dismutase-like activity comparable with pharmacological active compounds.  相似文献   

3.
Cyclometalated ruthenium(II) complexes, [Ru(II)(C~N)(N~N)(2)]PF(6) [HC~N=2-phenylpyridine (Hphpy) or 2-(4'-tolyl)pyridine; N~N=2,2'-bipyridine, 1,10-phenanthroline, or 4,4'-dimethyl-2,2'-bipyridine], are rapidly oxidized by H(2)O(2) catalyzed by plant peroxidases to the corresponding Ru(III) species. The commercial isoenzyme C of horseradish peroxidase (HRP-C) and two recently purified peroxidases from sweet potato (SPP) and royal palm tree (RPTP) have been used. The most favorable conditions for the oxidation have been evaluated by varying the pH, buffer, and H(2)O(2) concentrations and the apparent second-order rate constants ( k(app)) have been measured. All the complexes studied are oxidized by HRP-C at similar rates and the rate constants k(app) are identical to those known for the best substrates of HRP-C (10(6)-10(7) M(-1) s(-1)). Both cationic (HRP-C) and anionic (SPP and RPTP) peroxidases show similar catalytic efficiency in the oxidation of the Ru(II) complexes. The mediating capacity of the complexes has been evaluated using the SPP-catalyzed co-oxidation of [Ru(II)(phpy)(bpy)(2)]PF(6) and catechol as a poor peroxidase substrate as an example. The rate of enzyme-catalyzed oxidation of catechol increases more than 10000-fold in the presence of the ruthenium complex. A simple routine for calculating the rate constant k(c) for the oxidation of catechol by the Ru(III) complex generated enzymatically from [Ru(II)(phpy)(bpy)(2)](+) is proposed. It is based on the accepted mechanism of peroxidase catalysis and involves spectrophotometric measurements of the limiting Ru(II) concentration at different concentrations of catechol. The calculated k(c) value of 0.75 M(-1) s(-1) shows that the cyclometalated Ru(II) complexes are efficient mediators in peroxidase catalysis.  相似文献   

4.
The interaction of F with high and low spin ferric deuteroporphyrin IX dimethyl ester and a low spin model compound, bis(histidine methyl ester) deuterohemin IX has been studied in dimethylformamide solution by low-temperature EPR. The reaction of F with these complexes leads to high spin compounds. The structure of the EPR line at g = 2 is due to superhyperfine interactions with axial fluoride ligands. It allows their identification as mono- or difluoride complexes. Their optical absorption spectra are reported. In the particular cases of bis(imidazole) deuterohemin IX dimethyl ester and of the model compound, the variations of the EPR spectra as functions of concentration of ionic ligand are reported. Three new low spin complexes are thus obtained. They are characterized by a specific interaction of F with the NH group of the imidazole ring. This is proved following a second independent study in which we report the changes in g tensor principal values of low spin ferric porphyrins with the basicity (pKa) of various nitrogenous bases.  相似文献   

5.
The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequistie for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10(-3)M and for peroxidatic activity of catalase at 10(-1)M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10(-3)M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10(-1)M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2-0.5 mu) particles similar to small peroxisomes described in various other cell-types.  相似文献   

6.
An electron spin resonance (ESR) assay has been developed for peroxidase activity. The assay measures the formation of the paramagnetic nitroxide Tempol from the oxidation of its hydroxylamine derivative (TOLH) by short-lived radicals produced by peroxidase cycle intermediates, Compounds I and II. Using phenol as a peroxidase electron donor, the ESR approach is suitable for measurements of peroxidase activity ( > or = 0.003 U/ml) and micromolar quantities of H2O2 in sample sizes as small as 2 microliters. In addition, the ESR method can be used to continuously monitor activity in cell suspensions and other media that are susceptible to optical artifacts. The high membrane permeability of TOLH also makes it possible to estimate peroxidase activity in membrane-enclosed compartments, provided that TOLH oxidation rates can be stimulated with exogenous peroxidase reductants, e.g., phenol. Analysis of TOLH oxidation rates under conditions of low electron donor concentrations and high concentrations of H2O2 also shows clear indications of substrate-dependent inhibition and increased catalytic activity. Computer simulations indicate that the results obtained are consistent with the peroxidase reaction scheme proposed by Kohler et al. (1988, Arch. Biochem. Biophys. 264, 438-449) modified to correct for a nitroxide dependent stimulation of peroxidase catalytic activity.  相似文献   

7.
The effect of low concentrations of sodium oleate on the oxidation of oxymyoglobin to metmyoglobin has been examined. This long chain fatty acid results in a tripling of the initial rate (1.5-4.3 h-1) at which oxymyoglobin is converted to metmyoglobin and more than doubling of the rate of the long-term reaction (0.12-0.33 h-1). Examination of rate constant enhancement over a range of oleate concentrations (0-0.215 mM) has allowed an estimate of association constants for both phases of the reaction system. The peroxidase activity expressed by metmyoglobin towards hydrogen peroxide is inhibited by the presence of sodium oleate by a fivefold increase in the apparent Km value (0.33-1.77 mM). The observed changes in oxymyoglobin concentration over time are discussed in terms of competition between metmyoglobin, which acts as a peroxidase decreasing in situ concentrations of H2O2, and oxymyoglobin, which also is oxidized by the peroxide. It is shown that oleate can bind to metmyoglobin and azidometmyoglobin, but not oxymyoglobin. Catalase reduces the oxidation rates of oxymyoglobin in the presence or in the absence of oleate, substantiating the involvement of H2O2. The results are discussed in relation to the potential increase in tissue peroxidations in the presence of ischaemically elevated fatty acid concentrations.  相似文献   

8.
The reaction of copper(II) complexes supported by a series of beta-diketiminate ligands ((R1,R2)L, [(Dipp)N-C(R(2))-C(R(1))-C(R(2))-N(Dipp)](-), Dipp=2,6-diisopropylphenyl; see ) and H(2)O(2) has been examined spectroscopically at a low temperature. The beta-diketiminatocopper(II) complexes with R(2)=H (no substituent on the beta-carbon) provided a copper-oxygen intermediate that exhibited the same spectroscopic features as those of the bis(mu-oxo)dicopper(III) complex generated by the reaction of corresponding beta-diketiminatocopper(I) complex and O(2). On the other hand, the beta-diketiminatocopper(II) complexes with methyl substituent on the beta-carbon (R(2)=Me) did not produce such an intermediate in the same reaction. The beta-diketiminatocopper(II) complexes carrying an electron-withdrawing substituent on the alpha-carbon (R(1)=NO(2) or CN) but no beta-substituent (R(2)=H) exhibited a high catalytic activity in the oxygenation reaction of alkanes with H(2)O(2). Mechanism of the catalytic oxygenation reaction as well as the substituent effects of the ligands on the copper(II)-H(2)O(2) reactivity is discussed.  相似文献   

9.
The peroxidase activity was found in Propionibacterium shermanii. Methods were developed to isolate and purify the enzyme. It was shown to be a heme-containing protein, specific to H2O2, stable at 20 to 30 degrees C and exerting the optimal action at pH 6.8 to 7.0. The rate of the enzyme-catalysed reaction was studied as a function of the enzyme and substrate concentrations. The Km was determined for H2O2 and o-dianisidine.  相似文献   

10.
The exchange-inert tetra-ammino-chromium complex of ATP [Cr(NH3)4ATP], unlike the analogous cobalt complex Co(NH3)4ATP, inactivated Na+/K(+)-ATPase slowly by interacting with the high-affinity ATP binding site. The inactivation proceeded at 37 degrees C with an inactivation rate constant of 1.34 x 10(-3) min-1 and with a dissociation constant of 0.62 microM. To assess the potential role of the water ligands of metal in binding and inactivation, a kinetic analysis of the inactivation of Na+/K(+)-ATPase by Cr(NH3)4ATP, and its H2O-substituted derivatives Cr(NH3)3(H2O)ATP, Cr(NH3)2(H2O)2ATP and Cr(H2O)4ATP was carried out. The substitution of the H2O ligands with NH3 ligands increased the apparent binding affinity and decreased the inactivation rate constants of the enzyme by these complexes. Inactivation by Cr(H2O)4ATP was 29-fold faster than the inactivation by Cr(NH3)4ATP. These results suggested that substitution to Cr(III) occurs during the inactivation of the enzyme. Additionally hydrogen bonding between water ligands of metal and the enzyme's active-site residues does not seem to play a significant role in the inactivation of Na+/K(+)-ATPase by Cr(III)-ATP complexes. Inactivation of the enzyme by Rh(H2O)nATP occurred by binding of this analogue to the high-affinity ATP site with an apparent dissociation constant of 1.8 microM. The observed inactivation rate constant of 2.11 x 10(-3) min-1 became higher when Na+ or Mg2+ or both were present. The presence of K+ however, increased the dissociation constant without altering the inactivation rate constant. High concentrations of Na+ reactivated the Rh(H2O)nATP-inactivated enzyme. Co(NH3)4ATP inactivates Na+/K(+)-ATPase by binding to the low-affinity ATP binding site only at high concentrations. However, inactivation of the enzyme by Cr(III)-ATP or Rh(III)-ATP complexes was prevented when low concentrations of Co(NH3)4ATP were present. This indicates that, although Co(NH3)4ATP interacts with both ATP sites, inactivation occurs only through the low-affinity ATP site. Inactivation of Na+/K(+)-ATPase was faster by the delta isomer of Co(NH3)4ATP than by the delta isomer. Co(NH3)4ATP, but not Cr(H2O)4ATP or adenosine 5'-[beta,gamma-methylene]triphosphate competitively inhibited K(+)-activated p-nitrophenylphosphatase activity of Na+/K(+)-ATPase, which is assumed to be a partial reaction of the enzyme catalyzed by the low-affinity ATP binding site.  相似文献   

11.
Hydroperoxide metabolism in cyanobacteria   总被引:9,自引:0,他引:9  
The enzymes involved in antioxidative activity and the cellular content of the antioxidants glutathione and ascorbate in the cyanobacteria Nostoc muscorum 7119 and Synechococcus 6311 have been examined for their roles in hydroperoxide removal. High activities of ascorbate peroxidase and catalase were found in vegetative cells of both species and in the heterocysts of N. muscorum. The affinity of ascorbate peroxidase for H2O2 was 15- to 25-fold higher than that of catalase. Increased activity of ascorbate peroxidase was observed in N. muscorum when H2O2 production was enhanced by photorespiration. Catalase activity was decreased in dilute cultures whereas ascorbate peroxidase activity increased. Ascorbate peroxidase activity also increased when the CO2 concentration was reduced. Ascorbate peroxidase appears to be a key enzyme in a cascade of reactions regenerating antioxidants. Dehydroascorbate reductase was found to regenerate ascorbate, and glutathione reductase recycled glutathione. In vegetative cells glutathione was present in high amounts (2-4 mM) whereas the ascorbate content was almost 100-fold lower (20-100 microM). Glutathione peroxidase was not detected in either cyanobacterium. It is concluded from the high activity of ascorbate peroxidase activity and the levels of antioxidants found that this enzyme can effectively remove low concentrations of peroxides. Catalase may remove H2O2 produced under photooxidative conditions where the peroxide concentration is higher.  相似文献   

12.
Degradation of myelin basic protein during incubations with high concentrations of horseradish peroxidase has been demonstrated [Johnson & Cammer (1977) J. Histochem. Cytochem.25, 329-336]. Possible mechanisms for the interaction of the basic protein with peroxidase were investigated in the present study. Because the peroxidase samples previously observed to degrade basic protein were mixtures of isoenzymes, commercial preparations of the separated isoenzymes were tested, and all three degraded basic protein, but to various extents. Three other basic proteins, P(2) protein from peripheral nerve myelin, lysozyme and cytochrome c, were not degraded by horseradish peroxidase under the same conditions. Inhibitor studies suggested a minor peroxidatic component in the reaction. Therefore the peroxidatic reaction with basic protein was studied by using low concentrations of peroxidase along with H(2)O(2). Horseradish peroxidase plus H(2)O(2) caused the destruction of basic protein, a reaction inhibited by cyanide, azide, ferrocyanide, tyrosine, di-iodotyrosine and catalase. Lactoperoxidase plus H(2)O(2) and myoglobin plus H(2)O(2) were also effective in destroying the myelin basic protein. Low concentrations of horseradish peroxidase plus H(2)O(2) were not active against other basic proteins, but did destroy casein and fibrinogen. Although high concentrations of peroxidase alone degraded basic protein to low-molecular-weight products, suggesting the operation of a proteolytic enzyme contaminant in the absence of H(2)O(2), incubations with catalytic concentrations of peroxidase in the presence of H(2)O(2) converted basic protein into products with high molecular weights. Our data suggest a mechanism for the latter, peroxidatic, reaction where polymers would form by linking the tyrosine side chains in basic-protein molecules. These data show that the myelin basic protein is unusually susceptible to peroxidatic reactions.  相似文献   

13.
The total rate of mitochondrial O2- production in the presence of NADH as substrate increased from 200 to 1340 pmol/min per axis between 2 and 30 h of imbibition. The activities of the enzymes involved in hydroperoxide metabolism, e.g., superoxide dismutase, catalase, peroxidase and glutathione and ascorbate peroxidases, markedly changed during the germination of soybean embryonic axes. Superoxide dismutase was the enzymatic activity affected the most during the initial stages of germination. Intracellular O2- steady-state concentration, calculated from the rate of O2- production and superoxide dismutase activity, showed a 2-fold increase from 2 x 10(-8) M to 4 x 10(-8) M in germination phase I, declined in phase II to 2 x 10(-8) M and remained constant over the rest of the incubation period. The reaction of H2O2 and luminol catalyzed by Co2+ was utilized to measure H2O2 diffused out of the soybean axes after 5 to 10 min of incubation. The catalase-sensitive luminol emission of diffusates prepared from axes previously imbibed from 2 to 30 h corresponded to a H2O2 intracellular steady-state concentration in the range of 0.3 to 0.9 microM. The activity of metal-containing antioxidant enzymes was determined in the extracellular fluid. Cell wall peroxidase activity increased from 10 to 300 mumol/min per mg protein and appears as a potentially important pathway for H2O2 utilization. Hydrogen peroxide metabolism in soybean embryonic axes during early inhibition appears to have the following main features: (a) mitochondrial membranes are the most important source of cytosolic O2- and H2O2; (b) H2O2 is regulated at a steady-state concentration of 0.3-0.9 microM; (c) catalase is the main enzyme in terms of H2O2 utilization; (d) H2O2 exo-diffusion is quantitatively important destiny of intracellular H2O2; and (e) extracellular peroxidase located at the cell wall affords an enzymatic system able to use diffused H2O2.  相似文献   

14.
Peroxidases catalyze many reactions, the most common being the utilization of H2O2 to oxidize numerous substrates (peroxidative mode). Peroxidases have also been proposed to produce H2O2 via utilization of NAD(P)H, thus providing oxidant either for the first step of lignification or for the "oxidative burst" associated with plant-pathogen interactions. The current study with horseradish peroxidase characterizes a third type of peroxidase activity that mimics the action of catalase; molecular oxygen is produced at the expense of H2O2 in the absence of other reactants. The oxygen production and H2O2-scavenging activities had temperature coefficients, Q10, of nearly 3 and 2, which is consistent with enzymatic reactions. Both activities were inhibited by autoclaving the enzyme and both activities had fairly broad pH optima in the neutral-to-alkaline region. The apparent Km values for the oxygen production and H2O2-scavenging reactions were near 1.0 mM H2O2. Irreversible inactivation of horseradish peroxidase by exposure to high concentrations of H2O2 coincided with the formation of an absorbance peak at 670 nm. Addition of superoxide dismutase (SOD) to reaction mixtures accelerated the reaction, suggesting that superoxide intermediates were involved. It appears that horseradish peroxidase is capable of using H2O2 both as an oxidant and as a reductant. A model is proposed and the relevance of the mechanism in plant-bacterial systems is discussed.  相似文献   

15.
Chloride peroxidase catalyses both the ring halogenation and N-oxidation reactions of 4-chloroaniline by H2O2 and either KCl or KBr. In the absence of any halide salt only the N-oxidation reaction was observed, with the resulting conversion of 4-chloroaniline into 4-chloronitrosobenzene. The N-oxidation reaction proceeded even more rapidly in the presence of Cl- or Br-, in spite of the fact that ring halogenation was also a rapid reaction. The enhancement of N-oxidation was highly dependent on the pH of the media and displayed an optimum in the region of pH 3.5-4.0. No rate enhancement was observed above pH 5.5. KF partially inhibited the rate of N-oxidation in a pH-dependent manner. On the basis of calculated catalytic-centre activity the N-oxidation reaction was the major reaction at pH 3.5 or higher, whereas the ring-halogenation reaction became the major reaction below pH 3.5. In the presence of high concentrations of 4-chloroaniline relative to H2O2 the reaction intermediate, 4-chlorophenylhydroxylamine, was detected for the first time in a chloride peroxidase-catalysed reaction with this arylamine substrate. These findings were interpreted on the basis of current knowledge concerning the mechanism of action of chloride peroxidase.  相似文献   

16.
The kinetics of the cytolytic activity expressed by lactoperoxidase and horseradish peroxidase toward erythrocytes in the presence of H2O2 and iodide have been investigated at physiological pH. The action of both enzymes was found to be very similar with respect to their kinetic mechanisms. Both enzymes showed saturation kinetics at higher enzyme concentrations under conditions where substrate concentrations were not limiting. Optimal concentrations of H2O2 and iodide were found to be 40 and 25 microM, respectively, for both enzymes. Higher concentrations of H2O2 inhibited the cytolytic activity. The pH dependence of the cytolytic reaction is also very similar for both enzymes, showing maximal activity at about pH 6.3. Moreover, the cytolytic activities of both enzymes were inhibited by tyrosine, tryptophan, cysteine, and to a lesser extent by histidine. We conclude from these data that the mechanisms of horseradish peroxidase and lactoperoxidase in promoting the lysis of erythrocytes are closely related if not identical.  相似文献   

17.
Peroxidases catalyze the dehydrogenation by hydrogen peroxide (H2O2) of various phenolic and endiolic substrates in a peroxidatic reaction cycle. In addition, these enzymes exhibit an oxidase activity mediating the reduction of O2 to superoxide (O2.-) and H2O2 by substrates such as NADH or dihydroxyfumarate. Here we show that horseradish peroxidase can also catalyze a third type of reaction that results in the production of hydroxyl radicals (.OH) from H2O2 in the presence of O2.-. We provide evidence that to mediate this reaction, the ferric form of horseradish peroxidase must be converted by O2.- into the perferryl form (Compound III), in which the haem iron can assume the ferrous state. It is concluded that the ferric/perferryl peroxidase couple constitutes an effective biochemical catalyst for the production of .OH from O2.- and H2O2 (iron-catalyzed Haber-Weiss reaction). This reaction can be measured either by the hydroxylation of benzoate or the degradation of deoxyribose. O2.- and H2O2 can be produced by the oxidase reaction of horseradish peroxidase in the presence of NADH. The .OH-producing activity of horseradish peroxidase can be inhibited by inactivators of haem iron or by various O2.- and .OH scavengers. On an equimolar Fe basis, horseradish peroxidase is 1-2 orders of magnitude more active than Fe-EDTA, an inorganic catalyst of the Haber-Weiss reaction. Particularly high .OH-producing activity was found in the alkaline horseradish peroxidase isoforms and in a ligninase-type fungal peroxidase, whereas lactoperoxidase and soybean peroxidase were less active, and myeloperoxidase was inactive. Operating in the .OH-producing mode, peroxidases may be responsible for numerous destructive and toxic effects of activated oxygen reported previously.  相似文献   

18.
Reaction of horseradish peroxidase A2 and C with superoxide anion (O2-) has been studied using pulse radiolysis technique. Peroxidase C formed Compound I and an oxy form of the enzyme due to reaction of ferric enzyme with hydrogen peroxide (H2O2) and O2-, respectively. At low concentrations of O2- (less than 1 mM), O2- reacted with ferric peroxidase C nearly quantitatively and formation of H2O2 was negligible. The rate constant for the reaction was found to be increased below pH 6 and this phenomenon can be explained by assuming that HO2 reacts with peroxidase C more rapidly than O2-. In contrast the formation of oxyperoxidase could not be detected in the case of peroxidase A2 after the pulse, and only Compound I of the enzyme was formed. Peroxidase A2, however, produced the oxy form upon aerobic addition of NADH, suggesting that O2- can also react with peroxidase A2 to form the oxy form. The results at present indicate that the rate constant for the reaction of O2- with peroxidase A2 is smaller than 103 M-1.s-1.  相似文献   

19.
Formation of oxyperoxidase from the reaction of ferryl horseradish peroxidase with H2O2 is inhibited by a small amount of tetranitromethane (TNM), a powerful scavenger of superoxide anion radical. The inhibition by TNM, however, does not exceed 35% as the TNM concentration is increased above 5 microM. The stoichiometry of the reaction in the presence of TNM suggests the following equation for TNM-sensitive formation of oxyperoxidase. Ferryl peroxidase + H2O2----(ferric peroxidase + O2- + H+)----oxyperoxidase The kinetic study on the TNM-resistant formation of oxyperoxidase suggests that the displacement of the oxygen with H2O2 takes place at the sixth coordination position at maximal rates of 0.048 and 0.054 s-1 for peroxidases A and C, respectively, at 5 degrees C. The TNM-sensitive and -resistant reactions are concluded to occur in parallel, and both yield oxyperoxidase. In either mechanism, the protonated form of ferryl peroxidase is active and the pK alpha value is 7.1 for peroxidase A and 8.6 for peroxidase C. Oxyperoxidase decomposes spontaneously with a large activation energy (23.0 kcal/mol), and the reaction of ferryl peroxidase with H2O2 reaches a steady level of oxyperoxidase, which depends on pH and the concentration of H2O2.  相似文献   

20.
W S Thayer 《FEBS letters》1986,202(1):137-140
Cardiac metabolism of H2O2 was studied by determining the concentration dependence for H2O2-stimulated release of GSSG, an indicator for flux through the glutathione peroxidase pathway, in perfused heart preparations. Treatment of rats with aminotriazole in vivo inhibited heart catalase by 83% and shifted the dose-response curve for GSSG release toward lower H2O2 concentrations. In aminotriazole-treated rats, 50 microM H2O2 elicited a maximal rate of GSSG release (about 5 nmol GSSG/min per g heart), whereas 200 microM H2O2 was necessary for obtaining a similar rate of GSSG release in control rat hearts. The results show that catalase, although present at low levels of activity in the heart compared to other organs, functions as a major route for detoxication of H2O2 in the myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号