首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bicyclic dioxetanes 2a–c bearing a 2′‐alkoxy‐2‐hydroxy‐1,1′‐binaphthyl‐7‐yl moiety were effectively synthesized and their base‐induced chemiluminescent decomposition was investigated by the use of alkaline metal (Na+ and K+) or Mg2+ alkoxide in MeOH. When 2a–c were treated with tetrabutylammonium fluoride (TBAF) in dimethyl sulfoxide (DMSO) as a reference system, they showed chemiluminescence as a flash of orange light (maximum wavelength λmaxCL = 573–577 nm) with efficiency ΦCL = 6–8 × 10–2. On the other hand, for an alkaline metal (Na+ or K+) alkoxide/MeOH system, 2a–c decomposed slowly to emit a glow of chemiluminescence, the spectra of which were shifted slightly toward red from the TBAF/DMSO system, and ΦCL (= 1.4–2.3 × 10–3) was considerably decreased. In addition, Mg(OMe)2 was found to play a characteristic role as a base for the chemiluminescent decomposition of 2a–c through coordination to the intermediary oxidoaryl‐substituted dioxetanes 13. Thus, Mg2+ increased ΦCL to more than twice those with Na+ or K+, while it shifted λmaxCL considerably toward blue (λmaxCL = 550–566 nm). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

4.
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo.  相似文献   

5.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

6.
New Delhi metallo‐β‐lactamase‐1 (NDM‐1), one of the metallo‐β‐lactamases (MBLs), has been identified from clinical isolates worldwide. Rapid detection of NDM‐1 producers is necessary to prevent their dissemination. Seven types of EDTA complexes were evaluated as MBL inhibitors in double‐disk synergy tests (DDSTs), resulting in detection of the first isolate of NDM‐1‐producing Escherichia coli (NDM‐1 Dok01) in Japan. NDM‐1 Dok01 was detected when EDTA magnesium disodium salt tetrahydrate (Mg‐EDTA), EDTA calcium disodium salt dihydrate, EDTA cobalt disodium salt tetrahydrate and EDTA copper disodium salt tetrahydrate were used as MBL inhibitors. The sensitivity and specificity of DDSTs using Mg‐EDTA for 75 MBL producers and 25 non‐MBL producers were 96.0% and 100%, respectively. These findings indicate that the DDST method using Mg‐EDTA can detect MBL‐producing strains, including NDM‐1 producers.  相似文献   

7.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

8.
9.
10.
11.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. Nitric oxide (NO) is a highly reactive nitrogen radical implicated in inflammatory responses. We investigated the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and NO production stimulated by TNF‐α in cultured myoblasts. TNF‐α stimulation caused iNOS expression and NO production in myoblasts (G7 cells). TNF‐α‐mediated iNOS expression was attenuated by integrin‐linked kinase (ILK) inhibitor (KP392) and siRNA. Pretreatment with Akt inhibitor, mammalian target of rapamycin (mTOR) inhibitor (rapamycin), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK) also inhibited the potentiating action of TNF‐α. Stimulation of cells with TNF‐α increased ILK kinase activity. TNF‐α also increased the Akt and mTOR phosphorylation. TNF‐α mediated an increase of NF‐κB‐specific DNA–protein complex formation, p65 translocation into nucleus, NF‐κB‐luciferase activity was inhibited by KP392, Akt inhibitor, and rapamycin. Our results suggest that TNF‐α increased iNOS expression and NO production in myoblasts via the ILK/Akt/mTOR and NF‐κB signaling pathway. J. Cell. Biochem. 109: 1244–1253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
This study was designed to evaluate the effect of Z‐FA.FMK (benzyloxycarbonyl‐l ‐phenylalanyl‐alanine‐fluoromethylketone), a pharmacological inhibitor of cathepsin B, on the proliferation of duodenal mucosal epithelial cells and the cellular system that controls this mechanism in these cells in vivo. For this investigation, BALB/c male mice were divided into four groups. The first group received physiological saline, the second group was administered Z‐FA.FMK, the third group received d ‐GalN (d ‐galactosamine) and TNF‐α (tumour necrosis factor‐α) and the fourth group was given both d ‐GalN/TNF‐α and Z‐FA.FMK. When d ‐GalN/TNF‐α was administered alone, we observed an increase in IL‐1β‐positive and active NF‐κB‐positive duodenal epithelial cells, a decrease in PCNA (proliferative cell nuclear antigen)‐positive duodenal epithelial cells and an increase in degenerative changes in duodenum. On the other hand, Z‐FA.FMK pretreatment inhibited all of these changes. Furthermore, lipid peroxidation, protein carbonyl and collagen levels were increased, glutathione level and superoxide dismutase activity were decreased, while there was no change in catalase activity by d ‐GalN/TNF‐α injection. On the contrary, the Z‐FA.FMK pretreatment before d ‐GalN/TNF‐α blocked these effects. Based on these findings, we suggest that Z‐FA.FMK might act as a proliferative mediator which is controlled by IL‐1β through NF‐κB and oxidative stress in duodenal epithelial cells of d ‐GalN/TNF‐α‐administered mice.  相似文献   

13.
14.
An easy‐to‐prepare chiral CE method for the enantiomeric separation of 13 new amphetamine‐like designer drugs, using CDs as chiral selectors, was developed. Sulfated‐β‐CD was found to be the best chiral selector among the three used (sulfated‐β‐CD, caroboxymethyl‐β‐CD, dimethyl‐β‐CD). The separation of the analytes was achieved in a fused‐silica gel capillary at 20 °C using an applied voltage of +25 kV. The optimized background electrolyte consisted of 63.5 mM H3PO4 and 46.9 mM NaOH in water. Several electrophoretic parameters such as CD type, CD concentration (1 ? 40 mg/mL), buffer pH (2.6, 3.6, 5.0, 6.0), length of the capillary (70 ? 40 cm total length), amount of the organic solvent (methanol and acetonitrile) were investigated and optimized. Chirality 25:617–621, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
16.
The gas chromatographic separation of enantiomers of 2‐Br carboxylic acid derivatives was studied on four different 6‐TBDMS‐2,3‐di‐O‐alkyl‐ β‐ and ‐γ‐CD stationary phases. The differences in thermodynamic data {ΔH and –ΔS} for the 15 structurally related racemates were evaluated. The influence of structure differences in the alkyl substituents covalently attached to the stereogenic carbon atom, as well as in the ester group of the homologous analytes, and the selectivity of modified β‐ and γ‐ cyclodextrin derivatives was studied in detail. The cyclodextrin cavity size, as well as elongation of alkyl substituents in positions 2 and 3 of 6‐TBDMS‐β‐CD, also affected their selectivity. The quality of enantiomeric separations is influenced mainly by alkyl chains of the ester group of the molecule and this appears to be independent of the CD stationary phase used. In some cases the separations occur as the result of external adsorption rather than inclusion complexations with the chiral selector. It was found that the temperature dependencies of the selectivity factor were nonlinear. Chirality 26:279–285, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) is a ubiquitous environmental pollutant that could induce significant toxic effects in the human nervous system. However, the underlying molecular mechanism has not been entirely elucidated. Reactive astrogliosis has implicated in various neurological diseases via the production of a variety of pro‐inflammatory mediators. Herein, we investigated the potential role of TCDD in facilitating astrocyte activation and the underlying molecular mechanisms. We showed that TCDD induced rapid astrocyte activation following TCDD exposure, which was accompanied by significantly elevated expression of Src‐Suppressed‐C Kinase Substrate (SSeCKS), a protein involved in protein kinase C (PKC)‐mediated Nuclear Factor kappa B signaling, suggesting a possible involvement of PKC‐induced SSeCKS activation in TCDD‐triggered reactive astroglia. In keeping with the finding, we found that the level of phosphorylated Nuclear Factor kappa B p65 was remarkably increased after TCDD treatment. Furthermore, interference of SSeCKS attenuated TCDD‐induced inducible nitric oxide synthase, glial fibrillary acidic protein, phospho‐p65 expression, and tumor necrosis factor‐α secretion in astrocytes. In addition, pre‐treatment with PKC inhibitor also attenuated TCDD‐induced astrocyte activation, as well as SSeCKS expression. Interestingly, we found that TCDD treatment could lead to SSeCKS perinuclear localization, which could be abolished after treatment with PKC inhibitor. Finally, we showed that inhibition of PKC activity or SSeCKS expression would impair TCDD‐triggered tumor necrosis factor‐α secretion. Our results suggested that TCDD exposure could lead to astrocyte activation through PKC/SSeCKS‐dependent mechanisms, highlighting that astrocytes might be important target of TCDD‐induced neurotoxicity.

  相似文献   


18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号