首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
水分管理调控水稻氮素利用研究进展   总被引:3,自引:0,他引:3  
水、氮是调控水稻生长发育的两个重要环境因子。通过"以水调氧"增加根际溶氧量(如干湿交替、好氧栽培等)能够提升土壤硝化势和氧化还原电位,刺激土壤氮的矿化作用,使水稻处于NH+4与NO-3混合营养中,并能通过诱导水稻的生理特性及改善根系的吸收功能增强其抗旱性能,提高水稻产量及氮素利用率。光合作用是形成干物质的主要途径,土壤氮水平、氮形态与水稻光合速率紧密相关,提高叶片光合速率将有助于提高水稻的氮素利用率和产量。从稻田水分管理对土壤氮素形态特征、水稻氮吸收利用、光合速率及氮环境效应的影响等方面综述了国内外相关研究进展,并指出进一步的研究方向。  相似文献   

2.
Summary An all glass tight growth chamber, entirely sterilizable, has been constructed to carry out axenic and gnotobiotic cultures of rice plants (Oryza sativa L.). When grown in liquid medium and in the absence of combined nitrogen but in the presence of the diazotrophsAzotobacter vinelandii andRhodopseudomonas capsulata, rice plants exhibited a complete biological cycle from germination up to ear stage, during a period of time similar to the one encountered in french paddy soil of Camargue. In one experiment, mannitol was given to rice culture medium together withAzotobacter vinelandii andRhodopseudomonas capsulata. In another experiment, mannitol was not given together with Rhodopseudomonas, and still positive nitrogen gain was obtained, although it was less than culture with mannitol. When15N labeled cells of Rhodopseudomonas were added in rice culture medium,15N was partly transferred to rice plant. Among the nitrogen substances excreted from the bacteria in the rhizosphere medium, large organic molecules were shown to be the most abundant in our experimental conditions. Moreover, the concentration of free ammonia or aminoacids present in the rice rhizosphere were always compatible with a bacterial nitrogenase activity.  相似文献   

3.
Conclusion The interactions between(Brady)Rhizobium and legume plants involves many interesting problems. In the last ten years, there were remarkable experiments which have detected excreted flavonoid compounds at pmol levels from plant roots, which induce(Brady)Rhizobium nod gene expression (Long 1989, Nap and Bisseling 1990, Dénariéet al. 1992, Schlamanet al. 1992). The responses of rhizobial genes to the various kinds of chemical compound are different (Maxwellet al. 1989, Zaatet al. 1989, Davis and Johnston 1990, Hartwiget al. 1990, Hungriaet al. 1992). The resolution of pSym genes controlling those mechanisms makes way for the long-term goal of introducing nitrogen fixation ability into nonlegume plants. Recently, some experiments have shown thatRhizobium and other nitrogen fixing bacteria form nodule-like strutures on rice, barley or wheat (Al-Mallah 1989, Jinget al. 1990, Rolfe and Bender 1991). Some O2 protection mechanism instead of leghemoglobin must be needed for nitrogen fixation byRhizobium or other N2-fixing bacteria which have invaded in the nonlegume root tissue. The isolation of the plant mutants or preparation of transgenic plants capable of hyper-nodule formation having efficient nitrogen fixation ability may be major goals. For the attainment of these goals, transformation of a foreign genome (nif-ornod gene cassette) into the plant cell might be a good way to proceed (Barkeret al. 1990). It is also necessary to clarify the relationships between the level of relative endogenous plant hormones and the exchange of the differentiation of the root tissue to the nodule tissue. This phenomenon of redifferentiation of plant tissue by the results from(Brady)Rhizobium and legume communications will be an important approach likely to lead to solve the molecular basis of plant having “TOTIPOTENCY”.  相似文献   

4.
Effects of nitrogen deficiency in hydroponically grown barley seedlings (Hordeum vulgare L.) on the development and reproduction of the aphid Rhopalosiphum padi (L.) (Hemiptera: Aphididae) were investigated.Plant growth was significantly reduced in seedlings grown without nitrogen. Aphid intrinsic rate of increase (r m) was also significantly lower on these plants compared with that on plants grown with 8 mol m–3 nitrogen. Phloem sap was collected from seedling stems by aphid stylectomy and amino acids quantified by HPLC. There was a significant reduction in the concentration of non-essential amino acids as a group, but not of essential amino acids. Electrical penetration graphs (EPG) indicated that aphids reached the phloem more quickly and fed for longer on plants grown with nitrogen. This is the first reported study in which this combination of techniques has been used to understand the interactions of an aphid and plant under different environmental conditions.  相似文献   

5.
Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (Vcmax), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co‐optimization of carboxylation and water costs for photosynthesis, suggests that optimal Vcmax can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field‐measured Vcmax dataset for C3 plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first‐order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs.  相似文献   

6.
Elevated CO2 enhances photosynthesis and growth of plants, but the enhancement is strongly influenced by the availability of nitrogen. In this article, we summarise our studies on plant responses to elevated CO2. The photosynthetic capacity of leaves depends not only on leaf nitrogen content but also on nitrogen partitioning within a leaf. In Polygonum cuspidatum, nitrogen partitioning among the photosynthetic components was not influenced by elevated CO2 but changed between seasons. Since the alteration in nitrogen partitioning resulted in different CO2-dependence of photosynthetic rates, enhancement of photosynthesis by elevated CO2 was greater in autumn than in summer. Leaf mass per unit area (LMA) increases in plants grown at elevated CO2. This increase was considered to have resulted from the accumulation of carbohydrates not used for plant growth. With a sensitive analysis of a growth model, however, we suggested that the increase in LMA is advantageous for growth at elevated CO2 by compensating for the reduction in leaf nitrogen concentration per unit mass. Enhancement of reproductive yield by elevated CO2 is often smaller than that expected from vegetative growth. In Xanthium canadense, elevated CO2 did not increase seed production, though the vegetative growth increased by 53%. As nitrogen concentration of seeds remained constant at different CO2 levels, we suggest that the availability of nitrogen limited seed production at elevated CO2 levels. We found that leaf area development of plant canopy was strongly constrained by the availability of nitrogen rather than by CO2. In a rice field cultivated at free-air CO2 enrichment, the leaf area index (LAI) increased with an increase in nitrogen availability but did not change with CO2 elevation. We determined optimal LAI to maximise canopy photosynthesis and demonstrated that enhancement of canopy photosynthesis by elevated CO2 was larger at high than at low nitrogen availability. We also studied competitive asymmetry among individuals in an even-aged, monospecific stand at elevated CO2. Light acquisition (acquired light per unit aboveground mass) and utilisation (photosynthesis per unit acquired light) were calculated for each individual in the stand. Elevated CO2 enhanced photosynthesis and growth of tall dominants, which reduced the light availability for shorter subordinates and consequently increased size inequality in the stand.  相似文献   

7.
Summary Oryza sativa grown in flooded soil were transferred to water culture solution and acetylene reduction activities (ARA) of intact plants and rootless plants were measured for 5 h. Relative rate of ARA associated with the rootless wetland rice plant as compared with an intact plant varied from 8 to 100 percent, depending on the growth stage and varieties of rice and highest at the early stage (3 weeks after transplanting) for all varieties tested (IR26, Latisail, Khao Lo, and JBS236). ARA of shoots was associated with basal parts of the shoots about 3 cm from the base of wetland cultivated rice andOryza australiensis. Phyllospheric ARA was negligible except for senescent outer leaf sheaths. Microaerophilic N2-fixing bacteria also inhabited basal parts of shoots (outer leaf sheaths and stems) of wetland rice. These findings suggest that N2-fixation is partly associated with the shoots of wetland rice plants.  相似文献   

8.
Plants often respond to elevated atmospheric CO2 levels with reduced tissue nitrogen concentrations relative to ambient CO2-grown plants when comparisons are made at a common time. Another common response to enriched CO2 atmospheres is an acceleration in plant growth rates. Because plant nitrogen concentrations are often highest in seedlings and subsequently decrease during growth, comparisons between ambient and elevated CO2-grown plants made at a common time may not demonstrate CO2-induced reductions in plant nitrogen concentration per se. Rather, this comparison may be highlighting differences in nitrogen concentration between bigger, more developed plants and smaller, less developed plants. In this study, we directly examined whether elevated CO2 environments reduce plant nitrogen concentrations independent of changes in plant growth rates. We grew two annual plant species. Abutilon theophrasti (C3 photosynthetic pathway) and Amaranthus retroflexus (C4 photosynthetic pathway), from seed in glass-sided growth chambers with atmospheric CO2 levels of 350 mol·mol–1 or 700 mol·mol–1 and with high or low fertilizer applications. Individual plants were harvested every 2 days starting 3 days after germination to determine plant biomass and nitrogen concentration. We found: 1. High CO2-grown plants had reduced nitrogen concentrations and increased biomass relative to ambient CO2-grown plants when compared at a common time; 2. Tissue nitrogen concentrations did not vary as a function of CO2 level when plants were compared at a common size; and 3. The rate of biomass accumulation per rate of increase in plant nitrogen was unaffected by CO2 availability, but was altered by nutrient availability. These results indicate that a CO2-induced reduction in plant nitrogen concentration may not be due to physiological changes in plant nitrogen use efficiency, but is probably a size-dependent phenomenon resulting from accelerated plant growth.  相似文献   

9.
Hydroponic experiments were conducted in a greenhouse to examine the effects of different nitrogen (N) supply (low, 20 mg L−1; intermediate, 40 mg L−1; and high, 100 mg L−1) on the growth, nitrogen use efficiency, and photosynthetic characteristics of rice seedlings (Oryza sativa L., cv. “Shanyou 63” hybrid indica. China). Leaf gas exchange was conducted to identify the photosynthetic-limiting factors in plants with high N supply. The results showed that (1) shoot biomass, leaf area, and tiller numbers per plant under low N were lower than under intermediate and high N supplies. No significant differences were observed between plants supplied with intermediate and high N. (2) About a 35% increase in leaf N content in plants fed by high N resulted in about a 15% increase in carboxylation efficiency (CE) and photosynthetic rate. (3) The noncorresponding increases in photosynthetic rate in rice seedlings fed by high N relative to low N resulted from Rubisco activity and/or CE. (4) The decreased Rubisco activity was induced by a relatively insufficient CO2 supply under high N supply. These results indicated that insufficient CO2 supply under high N supply accounted for the decreased Rubisco activity and the noncorresponding increases in photosynthetic rate to leaf N content, and as a result, decreased (photosynthetic) nitrogen use efficiency.  相似文献   

10.
干热河谷车桑子光合生理特性对氮磷添加的响应   总被引:1,自引:0,他引:1  
王雪梅  刘泉  闫帮国  赵广  刘刚才 《生态学报》2019,39(22):8615-8629
氮磷养分是限制干热河谷植物生长的重要元素,不同土壤上植物受到的养分限制类型不同。光合作用作为植物生长发育的基础,不同土壤上氮磷养分添加对干热河谷植物光合生理特征的影响还没有报道。因此,以干热河谷优势植物——车桑子为研究对象,在元谋县不同海拔处采集土壤,设置加氮(+N)、加磷(+P)、氮磷同时添加(+NP)和不添加(CK)四个处理,研究车桑子光合响应曲线、叶绿素含量和叶绿素荧光特性对氮、磷添加的响应规律,并探讨光合响应特征与车桑子生长的关系:研究结果显示:1)不同海拔土壤上,车桑子光合生理特性对氮磷添加具有不同的响应。在低海拔燥红土上,氮添加处理(+N和+NP)提高了车桑子净光合速率、叶绿素含量和PSII活性;中海拔紫色土上,+NP促进了车桑子光合速率和叶绿素含量的提高;高海拔黄棕壤上,+N处理降低了车桑子净光合速率和PSII活性,而磷添加处理(+P和+NP)提高了车桑子净光合速率。2)车桑子光合特性对养分添加的响应取决于土壤的养分限制类型,限制性养分添加可以提高车桑子的净光合速率。3)燥红土上+P以及黄棕壤上+N对PSⅡ最大光化学效率(Fv/Fm)的降低更大程度上归于可变荧光Fv的减少而不是最小荧光F0的增加,可减少养分限制对光系统II造成的伤害。4)三种土壤类型上车桑子的叶绿素含量和组成差异极显著,相比于燥红土和紫色土,黄棕壤上车桑子的叶绿素含量显著更高,而叶绿素a/b显著更低。综上,本研究结果表明,车桑子光合能力受到氮和磷的共同调节,不同土壤上光合生理特性的响应可增强植物对限制性养分的适应性,影响植物生长发育。  相似文献   

11.
Monitoring leaf photosynthesis with canopy spectral reflectance in rice   总被引:3,自引:0,他引:3  
Non-destructive and rapid method for assessment of leaf photosynthetic characteristics is needed to support photosynthesis modelling and growth monitoring in crop plants. We determined the quantitative relationships between leaf photosynthetic characteristics and canopy spectral reflectance under different water supply and nitrogen application rates. The responses of reflectance at red radiation (wavelength 680 nm) to different water contents and nitrogen rates were parallel to those of leaf net photosynthetic rate (P N). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red, NIR/R) to P N of different leaf positions and leaf layers in rice indicated that the top two full leaves were the best leaf positions for quantitative monitoring of leaf P N with remote sensing technique, and the ratio index R(810,680) was the best ratio index for evaluating leaf photosynthetic characteristics in rice. Testing of the models with independent data sets indicated that R(810,680) could well estimate P N of top two leaves and canopy leaf photosynthetic potential in rice, with the root mean square error of 0.25, 0.16, and 4.38, respectively. Hence R(810,680) can be used to monitor leaf photosynthetic characteristics at different growth stages of rice under diverse growing conditions.  相似文献   

12.
Nitrogen fixation associated with non-legumes in agriculture   总被引:1,自引:0,他引:1  
P. J. Dart 《Plant and Soil》1986,90(1-3):303-334
Summary This review examines the nitrogen cycle in upland agricultural situations where nonlegume N2-fixation is likely to be important for crop growth. Evidence for associative fixation is adduced from accumulation of N in the top 15 cm soil under grasses, from N balances for crop production obtained from both pot and field experiments, in tropical and temperate environments, measurements of nitrogen (C2H2 reduction) activity, uptake of15N2 by plants and15N isotope dilution. Factors influencing the activity such as the provision of carbon substrate by the plant and the efficiency of its utilisation by the bacteria, plant cultivar, soil moisture and N levels, and inoculation with N2-fixing bacteria are discussed. Crop responses to inoculation withAzospirillum are detailed. The breakdown of crop residues, particularly straw, can support large levels of N2-fixation. Cyanobacteria as crusts on the soil surface also fix nitrogen actively in many environments. Fixation by the nodulated, non-legume treesCasuarina andParasponia has beneficial effects in some cropping systems in Asia. I conclude that nonlegume N2-fixation makes a significant contribution to the production of some major cereal crops in both temperate and tropical environments.  相似文献   

13.
Carnivorous plants grow in nutrient-poor habitats and obtain substantial amount of nitrogen from prey. Specialization toward carnivory may decrease the ability to utilize soil-derived sources of nutrients in some species. However, no such information exists for pitcher plants of the genus Nepenthes, nor the effect of nutrient uptake via the roots on photosynthesis in carnivorous plants is known. The principal aim of present study was to investigate, whether improved soil nutrient status increases photosynthetic efficiency in prey-deprived pitcher plant Nepenthes talangensis. Gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously and were correlated with Chl and nitrogen concentration as well as with stable carbon isotope abundance (δ13C) in control and fertilized N. talangensis plants. Net photosynthetic rate (P N) and maximum- (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the plants supplied with nutrients. Biomass, leaf nitrogen, and Chl (a+b) also increased in fertilized plants. In contrast, δ13C did not differ significantly between treatments indicating that intercellular concentration of CO2 did not change. We can conclude that increased root nutrient uptake enhanced photosynthetic efficiency in prey-deprived N. talangensis plants. Thus, the roots of Nepenthes plants are functional and can obtain a substantial amount of nitrogen from the soil.  相似文献   

14.
P. Wang  C. H. Kong  F. Hu  X. H. Xu 《Plant and Soil》2007,296(1-2):43-51
Allantoin (5-ureidohydantoin) plays an essential role in the assimilation, metabolism, transport, and storage of nitrogen in numerous higher plants, but its ecological implications are largely unknown. In this study allantoin was found in tissues of 11 rice (Oryza sativa) varieties tested, and its structure was characterised by X-ray diffraction analysis to confirm the fact that allantoin was actually obtained from the rice plants. Furthermore, the endogenous allantoin was exuded from the rice roots into the rhizosphere soils and had a great diversity of biological effects on associated weeds and microbes by soil interactions once released. However, allantoin levels in tissues or soils could not be distinguished between the allelopathic and non-allelopathic rice varieties. Field experiments showed that levels of allantoin released from rice varieties varied with their growth stages and reached the maximal levels at the stem elongation or panicle initiation to booting stages and then decreased dramatically. Allantoin could significantly stimulate the germination and growth of Echinochloa crus-galli and populations of soil bacteria and actinomycetes at selected test concentrations (30–500 μg/g), but had no effect on soil fungi. The half-life (t 1/2 ) of allantoin in autoclaved soil (20.2 ± 2.5 h, r 2 = 0.95) was almost three-times longer than in non-autoclaved soil (7.3 ± 1.9 h, r 2 = 0.92), indicating that rapid biodegradation or transformation of allantoin occurs in paddy soil. The results suggest that not only may allantoin play a role in the transport and storage of nitrogen in rice tissues but it may also participate in species interactions between rice and other organisms in paddy soil.  相似文献   

15.
植物叶片氮分配及其影响因子研究进展   总被引:5,自引:0,他引:5  
史作民  唐敬超  程瑞梅  罗达  刘世荣 《生态学报》2015,35(18):5909-5919
氮是植物生长的基本限制性因子,它的有效利用可以增加植物的适应性。叶片氮分配是指氮在植物叶片细胞各细胞结构以及游离化合物中所分配的比例。叶片氮的分配方式决定了叶片光合作用的强弱,影响叶片的坚韧程度以及化学防御强度,因此研究氮在植物叶片内的分配方式具有重要意义。阐述了叶片氮分配的方式,分析了影响叶片氮分配的生物和非生物因子(CO2,光,土壤养分),介绍了常用的叶片氮分配的研究方法,并对未来的研究进行了展望。  相似文献   

16.
During the past 25 Myr, partial pressures of atmospheric CO2 (Ca) imposed a greater limitation on C3 than C4 photosynthesis. This could have important downstream consequences for plant nitrogen economy and biomass allocation. Here, we report the first phylogenetically controlled comparison of the integrated effects of subambient Ca on photosynthesis, growth and nitrogen allocation patterns, comparing the C3 and C4 subspecies of Alloteropsis semialata. Plant size decreased more in the C3 than C4 subspecies at low Ca, but nitrogen pool sizes were unchanged, and nitrogen concentrations increased across all plant partitions. The C3, but not C4 subspecies, preferentially allocated biomass to leaves and increased specific leaf area at low Ca. In the C3 subspecies, increased leaf nitrogen was linked to photosynthetic acclimation at the interglacial Ca, mediated via higher photosynthetic capacity combined with greater stomatal conductance. Glacial Ca further increased the biochemical acclimation and nitrogen concentrations in the C3 subspecies, but these were insufficient to maintain photosynthetic rates. In contrast, the C4 subspecies maintained photosynthetic rates, nitrogen‐ and water‐use efficiencies and plant biomass at interglacial and glacial Ca with minimal physiological adjustment. At low Ca, the C4 carbon‐concentrating mechanism therefore offered a significant advantage over the C3 type for carbon acquisition at the whole‐plant scale, apparently mediated via nitrogen economy and water loss. A limiting nutrient supply damped the biomass responses to Ca and increased the C4 advantage across all Ca treatments. Findings highlight the importance of considering leaf responses in the context of the whole plant, and show that carbon limitation may be offset at the expense of greater plant demand for soil resources such as nitrogen and water. Results show that the combined effects of low CO2 and resource limitation benefit C4 plants over C3 plants in glacial–interglacial environments, but that this advantage is lessened under anthropogenic conditions.  相似文献   

17.
Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N2-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N2 fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.  相似文献   

18.
在一块肥力较低的土壤中,开展辣椒施用光合菌剂的大田实验,研究光合菌剂对辣椒生长发育及土壤微生物活性的影响。结果表明,肥力水平是影响辣椒生长发育的重要因素,施用光合菌剂能明显提高盛果期叶片中氮含量,获得单果重更高、果实更饱满,收获期辣椒植株的长势最好;在整个生育期内,光合菌剂处理的土壤微生物活性最高。因此,在贫瘠的土壤中,在补充肥力的基础上,光合菌剂能一定程度上改善土壤微生态环境,促进辣椒植株生长和果实发育,具有良好的应用前景。  相似文献   

19.
Abstract: Plant root exudates play important roles in the rhizosphere. We tested three media (nutrient solution, deionized water and CaSO4 solution) for three periods of time (2, 4 and 6 h) for collecting root exudates of soil‐grown rice plants. Nutrient culture solution created complications in the analyses of exudates for total organic C (TOC) by the wet digestion method and of organic acids by HPLC due to the interference by its components. Deionized water excluded such interference in analytical analyses but affected the turgor of root cells; roots of four widely different rice cultivars excreted 20 to 60 % more TOC in deionized water than in 0.01 M CaSO4. Furthermore, the proportion of carbohydrates in TOC was also enhanced. Calcium sulfate solution maintained the osmotic environment for root cells and did not interfere in analytical procedures. Collection for 2 h avoided under‐estimation of TOC and its components exuded by rice roots, which occurred during prolonged exposure. By placing plants in 0.01 M CaSO4 for 2 h, root exudates of soil‐grown traditional, tall rice cultivars (Dular, B40 and Intan), high‐yielding dwarf cultivars (IR72, IR52, IR64 and PSBRc 20), new plant type cultivars (IR65598 and IR65600) and a hybrid (Magat) were collected at seedling, panicle initiation, flowering and maturity and characterized for TOC and organic acids. The exudation rates were, in general, lowest at seedling stage, increased until flowering but decreased at maturity. Among organic acids, malic acid showed the highest concentration followed by tartaric, succinic, citric and lactic acids. With advancing plant growth, exudation of organic acids substituted exudation of sugars. Root and shoot biomass were positively correlated with carbon exudation suggesting that it is driven by plant biomass. As root exudates provide substrates for methanogenesis in rice fields, large variations in root exudation by cultivars and at different growth stages could greatly influence CH4 emissions. Therefore, the use of high‐yielding cultivars with lowest root excretions, for example IR65598 and IR65600, would mediate low exudate‐induced CH4 production. The screening of exciting rice cultivars and breeding of new cultivars with low exudation rates could offer an important option for mitigation of CH4 emission from rice agriculture to the atmosphere.  相似文献   

20.
Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号