首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The intracellular route followed by viral envelope glycoproteins in polarized Madin-Darby canine kidney cells was studied by using temperature-sensitive mutants of vesicular stomatitis virus (VSV) and influenza, in which, at the nonpermissive temperature (39.5 degrees C), the newly synthesized glycoproteins (G proteins) and hemagglutinin (HA), respectively, are not transported out of the endoplasmic reticulum. After infection with VSV and incubation at 39.5 degrees C for 4-5 h, synchronous transfer of G protein to the plasma membrane was initiated by shifting to the permissive temperature (32.5 degrees C). Immunoelectron microscopy showed that under these conditions the protein moved to the Golgi apparatus and from there directly to a region of the lateral plasma membrane near this organelle. G protein then seemed to diffuse progressively to basal regions of the cell surface and, only after it had accumulated in the basolateral domain, it began to appear on the apical surface near the intercellular junctions. The results of these experiments indicate that the VSV G protein must be sorted before its arrival at the cell surface, and suggest that passage to the apical domain occurs only late in infection when tight junctions are no longer an effective barrier. In complementary experiments, using the temperature-sensitive mutant of influenza, cultures were first shifted from the nonpermissive temperature (39.5 degrees C) to 18.5 degrees C, to allow entrance of the glycoprotein into the Golgi apparatus (see Matlin, K.S., and K. Simons, 1983, Cell, 34:233-243). Under these conditions HA accumulated in Golgi stacks and vesicles but did not reach the plasma membrane. When the temperature was subsequently shifted to 32.5 degrees C, HA rapidly appeared in discrete regions of the apical surface near, and often directly above, the Golgi elements, and later diffused throughout this surface. To ensure that the anti-HA antibodies had access to lateral domains, monolayers were treated with a hypertonic medium to dilate the intercellular spaces. Some labeling was then observed in the lateral plasma membranes soon after the shift, but this never increased beyond 1.0 gold particle/micron, whereas characteristic densities of labeling in apical surfaces soon became much higher (approximately 10 particles/micron). Our results suggest that the bulk of HA follows a direct pathway leading from the Golgi to regions of the apical surface close to trans-Golgi cisternae.  相似文献   

2.
We investigated the intracellular block in the transport of hemagglutinin (HA) and the role of HA in virus particle formation by using temperature-sensitive (ts) mutants (ts134 and ts61S) of influenza virus A/WSN/33. We found that at the nonpermissive temperature (39.5 degrees C), the exit of ts HA from the rough endoplasmic reticulum to the Golgi complex was blocked and that no additional block was apparent in either the exit from the Golgi complex or post-Golgi complex transport. When MDBK cells were infected with these mutant viruses, they produced noninfectious virus particles at 39.5 degrees C. The efficiency of particle formation at 39.5 degrees C was essentially the same for both wild-type (wt) and ts virus-infected cells. When compared with the wt virus produced at either 33 or 39.5 degrees C or the ts virus formed at 33 degrees C, these noninfectious virus particles were lighter in density and lacked spikes on the envelope. However, they contained the full complement of genomic RNA as well as all of the structural polypeptides of influenza virus with the exception of HA. In these spikeless particles, HA could not be detected at the limit of 0.2% of the HA present in wt virions. In contrast, neuraminidase appeared to be present in a twofold excess over the amount present in ts virus formed at 33 degrees C. These observations suggest that the presence of HA is not an obligatory requirement for the assembly and budding of influenza virus particles from infected cells. The implications of these results and the possible role of other viral proteins in influenza virus morphogenesis are discussed.  相似文献   

3.
The synchronized directed transfer of the envelope glycoproteins of the influenza and vesicular stomatitis viruses from the Golgi apparatus to the apical and basolateral surfaces, respectively, of polarized Madin-Darby canine kidney (MDCK) cells can be achieved using temperature-sensitive mutant viruses and appropriate temperature shift protocols (Rindler, M. J., I. E. Ivanov, H. Plesken, and D. D. Sabatini, 1985, J. Cell Biol., 100:136-151). The microtubule-depolymerizing agents colchicine and nocodazole, as well as the microtubule assembly-promoting drug taxol, were found to interfere with the normal polarized delivery and exclusive segregation of hemagglutinin (HA) to the apical surface but not with the delivery and initial accumulation of G on the basolateral surface. Immunofluorescence analysis of permeabilized monolayers of influenza-infected MDCK cells treated with the microtubule-acting drugs demonstrated the presence of substantial amounts of HA protein on both the apical and basolateral surfaces. Moreover, in cells infected with the wild-type influenza virus, particles budded from both surfaces. Viral counts in electron micrographs showed that approximately 40% of the released viral particles accumulated in the intercellular spaces or were trapped between the cell and monolayer and the collagen support as compared to less than 1% on the basolateral surface of untreated infected cells. The effect of the microtubule inhibitors was not a result of a rapid redistribution of glycoprotein molecules initially delivered to the apical surface since a redistribution was not observed when the inhibitors were added to the cells after the HA was permitted to reach the apical surface at the permissive temperature and the synthesis of new HA was inhibited with cycloheximide. The altered segregation of the HA protein that occurs may result from the dispersal of the Golgi apparatus induced by the inhibitors or from the disruption of putative microtubules containing tracks that could direct vesicles from the trans Golgi apparatus to the cell surface. Since the vesicular stomatitis virus G protein is basolaterally segregated even when the Golgi elements are dispersed and hypothetical tracks disrupted, it appears that the two viral envelope glycoproteins are segregated by fundamentally different mechanisms and that the apical surface may be incapable of accepting vesicles carrying the G protein.  相似文献   

4.
The endocytosis and intracellular transport of mannose-6-phosphate conjugated to bovine serum albumin (Man-6-P:BSA) by mouse T-lymphoma cells were investigated in detail using several methods of analysis, both morphological and biochemical. Man-6-P:BSA was labeled with fluorescein or 125I and used to locate both surface and intracellular Man-6-P binding sites by light or electron microscopy, respectively. Incubation of cells with either fluorescent- or 125I-labeled Man-6-P:BSA at 0 degree C revealed a uniform distribution of the Man-6-P binding sites over the cell surface. Competition experiments indicate that the Man-6-P:BSA binding sites on the cell surface are the same receptors that can recognize lysosomal hydrolases. After as little as 1 min incubation at 37 degrees C, endocytosis of Man-6-P binding sites was clearly observed to occur through regions of the plasma membrane and via vesicles that also bound anticlathrin antibody. After a 5-15-min incubation of cells at 37 degrees C, the internalized ligand was detected first in the cis region of the Golgi apparatus and then in the Golgi stacks using both autoradiography and immunocytochemistry to visualize the ligand. The appearance of Man-6-P:BSA in the Golgi region after 15-30 min was confirmed by subcellular fractionation, which demonstrated an accumulation of Man-6-P:BSA in light membrane fractions that corresponded with the Golgi fractions. After a 30-min incubation at 37 degrees C, the internalized Man-6-P binding sites were localized primarily in lysosomal structures whose membrane but not lumen co-stained for acid phosphatase. These results demonstrate a temporal participation of clathrin-containing coated vesicles during the initial endocytosis of Man-6-P binding sites and that one step in the Man-6-P:BSA transport pathway between plasma membrane and the lysosomal structure can involve a transit through the Golgi stacks.  相似文献   

5.
《The Journal of cell biology》1990,111(6):2893-2908
A procedure employing streptolysin O to effect the selective permeabilization of either the apical or basolateral plasma membrane domains of MDCK cell monolayers grown on a filter support was developed which permeabilizes the entire monolayer, leaves the opposite cell surface domain intact, and does not abolish the integrity of the tight junctions. This procedure renders the cell interior accessible to exogenous macromolecules and impermeant reagents, permitting the examination of their effects on membrane protein transport to the intact surface. The last stages of the transport of the influenza virus hemagglutinin (HA) to the apical surface were studied in pulse-labeled, virus-infected MDCK cells that were incubated at 19.5 degrees C for 90 min to accumulate newly synthesized HA in the trans-Golgi network (TGN), before raising the temperature to 35 degrees C to allow synchronized transport to the plasma membrane. In cells permeabilized immediately after the cold block, 50% of the intracellular HA molecules were subsequently delivered to the apical surface. This transport was dependent on the presence of an exogenous ATP supply and was markedly inhibited by the addition of GTP-gamma-S at the time of permeabilization. On the other hand, the GTP analogue had no effect when it was added to cells that, after the cold block, were incubated for 15 min at 35 degrees C before permeabilization, even though at this time most HA molecules were still intracellular and their appearance at the cell surface was largely dependent on exogenous ATP. These findings indicate that GTP-binding proteins are involved in the constitutive process that effects vesicular transport from the TGN to the plasma membrane and that they are charged early in this process. Transport of HA to the cell surface could be made dependent on the addition of exogenous cytosol when, after permeabilization, cells were washed to remove endogenous cytosolic components. This opens the way towards the identification of cell components that mediate the sorting of apical and basolateral membrane components in the TGN and their polarized delivery to the cell surface.  相似文献   

6.
Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the mutant-infected cells were shifted to the permissive temperature (28 degrees C), in the presence of cycloheximide, increasing amounts of virus glycoproteins appeared at the cell surface from 20 to 80 min after the shift. Both monensin (10muM) and carbonylcyanide-p- trifluoromethoxyphenylhydrazone (FCCP; 10-20 muM) inhibited the appearance of virus membrane glycoproteins at the cell surface. Vinblastine sulfate (10 μg/ml) inhibited the transport by approximately 50 percent, whereas cytochalasin B (1 μg/ml) had only a marginal effect. Intracellular distribution of virus glycoproteins in the mutant-infected cells was visualized in double-fluorescence studies using lectins as markers for endoplasmic reticulum and Golgi apparatus. At 39 degrees C, the virus membrane glycoproteins were located at the endoplasmic reticulum, whereas after shift to 28 degrees C, a bright juxtanuclear reticular fluorescence was seen in the location of the Golgi apparatus. In the presence of monensin, the virus glycoproteins could migrate to the Golgi apparatus, although transport to the cell surface did not take place. When the shift was carried out in the presence of FCCP, negligible fluorescence was seen in the Golgi apparatus and the glycoproteins apparently remained in the rough endoplasmic reticulum. A rapid inhibition in the accumulation of virus glycoproteins at the cell surface was obtained when FCCP was added during the active transport period, whereas with monensin there was a delay of approximately 10 min. These results suggest a similar intracellular pathway in the maturation of both plasma membrane and secretory glycoproteins.  相似文献   

7.
Mutations have been introduced into the cloned DNA sequences coding for influenza virus hemagglutinin (HA), and the resulting mutant genes have been expressed in simian cells by the use of SV40-HA recombinant viral vectors. In this study we analyzed the effect of specific alterations in the cytoplasmic domain of the HA molecule on its rate of biosynthesis and transport, cellular localization, and biological activity. Several of the mutants displayed abnormalities in the pathway of transport from the endoplasmic reticulum to the cell surface. One mutant HA remained within the endoplasmic reticulum; others were delayed in reaching the Golgi apparatus after core glycosylation had been completed in the endoplasmic reticulum, but then progressed at a normal rate from the Golgi apparatus to the cell surface; another was delayed in transport from the Golgi apparatus to the plasma membrane. However, two mutants were indistinguishable from wild-type HA in their rate of movement from the endoplasmic reticulum through the Golgi apparatus to the cell surface. We conclude that changes in the cytoplasmic domain can powerfully influence the rate of intracellular transport and the efficiency with which HA reaches the cell surface. Nevertheless, absolute conservation of this region of the molecule is not required for maturation and efficient expression of a biologically active HA on the surface of infected cells.  相似文献   

8.
《The Journal of cell biology》1983,97(5):1365-1374
An efficient method has been devised to introduce lipid molecules into the plasma membrane of mammalian cells. This method has been applied to fuse lipid vesicles with the apical plasma membrane of Madin-Darby canine kidney cells. The cells were infected with fowl plague or influenza N virus. 4 h after infection, the hemagglutinin (HA) spike glycoprotein of the virus was present in the apical plasma membrane of the cells. Lipid vesicles containing egg phosphatidylcholine, cholesterol, and an HA receptor (ganglioside) were then bound to the cells at 0 degrees C. More than 85% of the vesicles were released by external neuraminidase at 0 degrees C or by simply warming the cells to 37 degrees C for 10 s, probably because of the action of the viral neuraminidase at the cell surface. However, when the cells were warmed to 37 degrees C in a pH 5.3 medium for 30 s, 50% of the bound vesicles could no longer be released by external neuraminidase. This only occurred when the HA protein had been cleaved into its HA1 and HA2 subunits. When we used influenza N virus, whose HA is not cleaved in Madin-Darby canine kidney cells, cleavage with external trypsin was required. The fact that the HA protein has fusogenic properties at low pH only in its cleaved form suggests that fusion of the vesicles with the plasma membrane had taken place. Further confirmation for fusion was obtained using an assay based on the decrease of energy transfer between two fluorescent phospholipids in a vesicle upon fusion of the vesicle with the plasma membrane (Struck, D. K., D. Hoekstra, and R. E. Pagano. 1981. Biochemistry, 20:4093-4099).  相似文献   

9.
Madin-Darby canine kidney (MDCK) cells can sustain double infection with pairs of viruses of opposite budding polarity (simian virus 5 [SV5] and vesicular stomatitis virus [VSV] or influenza and VSV), and we observed that in such cells the envelope glycoproteins of the two viruses are synthesized simultaneously and assembled into virions at their characteristic sites. Influenza and SV5 budded exclusively from the apical plasma membrane of the cells, while VSV emerged only from the basolateral surfaces. Immunoelectron microscopic examination of doubly infected MDCK cells showed that the influenza hemagglutinin (HA) and the VSV G glycoproteins traverse the same Golgi apparatus and even the same Golgi cisternae. This indicates that the pathways of the two proteins towards the plasma membrane do not diverge before passage through the Golgi apparatus and therefore that critical sorting steps must take place during or after passage of the glycoproteins through this organelle. After its passage through the Golgi, the HA accumulated primarily at the apical membrane, where influenza virion assembly occurred. A small fraction of HA did, however, appear on the lateral surface and was incorporated into the envelope of budding VSV virions. Although predominantly found on the basolateral surface, significant amounts of G protein were observed on the apical plasma membrane well before disruption of the tight junctions was detectable. Nevertheless, assembly of VSV virions was restricted to the basolateral domain and in doubly infected cells the G protein was only infrequently incorporated into the envelope of budding influenza virions. These observations indicate that the site of VSV budding is not determined exclusively by the presence of G polypeptides. Therefore, it is likely that, at least for VSV, other cellular or viral components are responsible for the selection of the appropriate budding domain.  相似文献   

10.
Exocytic organelles undergo profound reorganization during myoblast differentiation and fusion. Here, we analyzed whether glycoprotein processing and targeting changed during this process by using vesicular stomatitis virus (VSV) G protein and influenza virus hemagglutinin (HA) as models. After the induction of differentiation, the maturation and transport of the VSV G protein changed dramatically. Thus, only half of the G protein was processed and traveled through the Golgi, whereas the other half remained unprocessed. Experiments with the VSV tsO45 mutant indicated that the unprocessed form folded and trimerized normally and then exited the ER. It did not, however, travel through the Golgi since brefeldin A recalled it back to the ER. Influenza virus HA glycoprotein, on the contrary, acquired resistance to endoglycosidase H and insolubility in Triton X-100, indicating passage through the Golgi. Biochemical and morphological assays indicated that the HA appeared at the myotube surface. A major fraction of the Golgi-processed VSV G protein, however, did not appear at the myotube surface, but was found in intracellular vesicles that partially colocalized with the regulatable glucose transporter. Taken together, the results suggest that, during early myogenic differentiation, the VSV G protein was rerouted into developing, muscle-specific membrane compartments. Influenza virus HA, on the contrary, was targeted to the myotube surface.  相似文献   

11.
Young (40 gm) rats were given a single intravenous injection of colchicine (4.0 mg) or vinblastine (2.0 mg). At 10 min after colchicine and 30 min after vinblastine administration, the rats were injected with 3H-fucose. Control rats received 3H-fucose only. All rats were sacrificed 90 min after 3H-fucose injection and their tissues processed for radioautography. In thyroid follicular cells of control animals, at this time interval, 57% of the total label was associated with colloid and secretory vesicles in the apical cytoplasm while 27% was localized in the Golgi apparatus and neighboring vesicles. In experimental animals, the proportion of label in colloid and apical vesicles was reduced by more than 69% after colchicine and more than 83% after vinblastine treatment. The proportion of label in the Golgi region, on the other hand, increased by more than 125% after colchicine and more than 179% after vinblastine treatment. Within the Golgi region, the great majority of the label was associated with secretory vesicles which accumulated adjacent to the trans face of the Golgi stacks. It is concluded that the drugs do not interfere with passage of newly synthesized thyroglobulin from the Golgi saccules to nearby secretory vesicles, but do inhibit intracellular migration of these vesicles to the cell apex. In most cells the number of vesicles in the apical cytoplasm diminished, but this was not always the case, suggesting that exocytosis may also be partially inhibited. The loss of microtubules in drug-treated cells suggests that the microtubules may be necessary for intracellular transport of thyroglobulin.  相似文献   

12.
High level expression of the M2 ion channel protein of influenza virus inhibits the rate of intracellular transport of the influenza virus hemagglutinin (HA) and that of other integral membrane glycoproteins. HA coexpressed with M2 is properly folded, is not associated with GRP78- BiP, and trimerizes with the same kinetics as when HA is expressed alone. Analysis of the rate of transport of HA from the ER to the cis and medial golgi compartments and the TGN indicated that transport through the Golgi apparatus is delayed. Uncleaved HA0 was not expressed at the cell surface, and accumulation HA at the plasma membrane was reduced to 75-80% of control cells. The delay in intracellular transport of HA on coexpression of M2 was not observed in the presence of the M2-specific ion channel blocker, amantadine, indicating that the Golgi transport delay is due to the M2 protein ion channel activity equilibrating pH between the Golgi lumen and the cytoplasm, and not due to saturation of the intracellular transport machinery. The Na+/H+ ionophore, monensin, which also equilibrates pH between the Golgi lumen and the cytoplasm, caused a similar inhibition of intracellular transport as M2 protein expression did for HA and other integral membrane glycoproteins. EM data showed a dilation of Golgi cisternae in cells expressing the M2 ion channel protein. Taken together, the data suggest a similarity of effects of M2 ion channel activity and monensin on intracellular transport through the Golgi apparatus.  相似文献   

13.
Five temperature-sensitive mutants of influenza virus A/FPV/Rostock/34 (H7N1), ts206, ts293, ts478, ts482, and ts651, displaying correct hemagglutinin (HA) insertion into the apical plasma membrane of MDCK cells at the permissive temperature but defective transport to the cell surface at the restrictive temperature, have been investigated. Nucleotide sequence analysis of the HA gene of the mutants and their revertants demonstrated that with each mutant a single amino acid change is responsible for the transport block. The amino acid substitutions were compared with those of mutants ts1 and ts227, which have been analyzed previously (W. Schuy, C. Will, K. Kuroda, C. Scholtissek, W. Garten, and H.-D. Klenk, EMBO J. 5:2831-2836, 1986). With the exception of ts206, the changed amino acids of all mutants and revertants accumulate in three distinct areas of the three-dimensional HA model: (i) at the tip of the 80-A (8-nm)-long alpha helix, (ii) at the connection between the globular region and stem, and (iii) in the basal domain of the stem. The concept that these areas are critical for HA assembly and hence for transport is supported by the finding that the mutants that are unable to leave the endoplasmic reticulum at the nonpermissive temperature do not correctly trimerize. Upon analysis by density gradient centrifugation, cross-linking, and digestion with trypsin and endoglucosaminidase H, two groups can be discriminated among these mutants: with ts1, ts227, and ts478, the HA forms large irreversible aggregates, whereas with ts206 and ts293, it is retained in the monomeric form in the endoplasmic reticulum. With a third group, comprising mutants ts482 and ts651 that enter the Golgi apparatus, trimerization was not impaired.  相似文献   

14.
The secretory process for glycoproteins in principal cells of the mouse caput epididymis was studied by electron microscope radioautography at intervals after exposure to [3H] fucose in vitro. The large Golgi apparatus showed very heavy labeling at the initial interval, followed by a steady decline in percent of grains and relative grain concentrations. Conversely, the epididymal lumen and the apical cell surface began low and increased in radioactivity at the 30-min interval. The extensive sparsely granulated endoplasmic reticulum showed modest increases in percent of grains and relative grain concentrations 30 min after administration of the percursor. Subdivision of the sparsely granulated reticulum into "intermediate" profiles (some ribosomes attached to the membranes) and "smooth" profiles (lacking ribosomes) showed that this increase was due to silver grains assigned to the smooth portions. After the initial interval, high relative grain concentrations were calculated for vesicles. The results indicate that glycosylation of epididymal secretory glycoproteins occurs in the Golgi apparatus, which is, therefore, not bypassed as its morphological features had suggested. The kinetics of the secretory process in the principal cells includes 15 to 30 min for synthesis of the polypeptide parts of secretory products and addition of sugars in the Golgi apparatus, and a similar time for subsequent release from the Golgi apparatus, transport to the apical end of the cell and discharge to the lumen. Ribosome-studded (intermediate) portions of the sparsely granulated endoplasmic reticulum are probably involved in synthesis of polypeptide parts of secretory products, while vesicles or smooth portions of the sparsely granulated reticulum may play a role in intracellular transport of glycoproteins.  相似文献   

15.
Internalization of cationized ferritin by isolated pancreatic acinar cells   总被引:2,自引:0,他引:2  
The internalization of cationized ferritin (CF) was studied in isolated pancreatic acinar cells in vitro. Horseradish peroxidase (HRP) was used in conjunction with CF to compare internalization of soluble-phase and membrane-bound tracers. The mode of internalization of CF was dependent upon tracer concentration and origin of the plasma membrane (apical vs. lateral-basal). At the lower tracer concentrations (0.19 and 0.38 mg/ml), internalization from the apical cell surface occurred via small vesicles. The tracer then appeared in multivesicular bodies, in tubules, and in irregular membrane-bound structures. After 15 min, CF particles were seen in many small vesicles near the Golgi apparatus, but not in the Golgi saccules. In contrast, at the lateral-basal cell surface the CF particles tended to form clusters. These clusters were more pronounced at higher CF concentrations (0.76 and 1.5 mg/ml) and were associated with elongated cellular processes, which seemed to engulf CF accumulations in a phagocytic manner. Once internalized, CF was found primarily in large irregular structures which appeared to migrate slowly toward the nucleus, reaching a juxtanuclear position after approximately 30 min. CF was observed in lysosomes after 30-45 min and by 90 min most of the CF was confined to large vacuoles and to trimetaphosphatase-positive lysosomes. Similar routes were observed when cells were double-labeled with CF and HRP, where endocytic structures showed co-localization of both tracers. The results of this study indicate the importance of the Golgi region in the intracellular sorting of internalized apical membrane. Furthermore, this work confirms the presence of distinct endocytic pathways at the apical and lateral-basal cell surfaces.  相似文献   

16.
This study was performed to clarify the fate of membrane constituents internalized from the apical domain in secretory cells, in particular their possible recycling and the compartments involved in it. Glycoproteins of the apical membrane of seminal vesicle secretory cells from guinea-pig were covalently labeled in vitro (0 degrees C, 20 min) with 3H-galactose and the epithelium incubated for 15 min (37 degrees C, first incubation) to allow endocytosis. The label which was not internalized was then exposed to enzymatic hydrolysis (0 degrees C, 30 min) and the epithelium re-incubated to allow membrane movement for 15 and 30 min (37 degrees C, 2nd incubation). After each step of the protocol, tissue pieces were fixed and processed for electron microscope autoradiography and the results studied by morphometric analysis. Following labeling, 99% of the silver grains were associated with the apical domain of the cell membrane (AD). After the 1st incubation at 37 degrees C, 30% of the grains were inside the cells in association with the cytoplasmic vesicles (Cyt ves), secretory vacuoles (SV), Golgi vesicles (GV), Golgi cisternae (GC), multivesicular bodies (MVB), lysosomes (LYS), and the cell membrane basolateral domain (BLD). About 58% of non-internalized radioactivity was removed by hydrolysis. During the 2nd incubation at 37 degrees C the concentration of label increased in BLD and LYS, decreased in SV and MVB, and fluctuated in GC, GV and AD. The distribution of grains observed at 15 min, as compared using the chi-square test, was highly significantly different from that expected without recycling. The results show that cell membrane glycoproteins internalized at the cell apex recycle back to the membrane apical domain and are consistent with the involvement of GC and SV in the recycling pathway. Membrane shuttle between the apical and basolateral domains of the cell membrane is also suggested by these observations.  相似文献   

17.
An immunoelectron microscopic study was undertaken to survey the intracellular pathway taken by the integral membrane protein (G-protein) of vesicular stomatitis virus from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane of virus-infected Chinese hamster ovary cells. Intracellular transport of the G-protein was synchronized by using a temperature-sensitive mutant of the virus (0-45). At the nonpermissive temperature (39.8 degrees C), the G-protein is synthesized in the cell infected with 0-45, but does not leave the rough endoplasmic reticulum. Upon shifting the temperature to 32 degrees C, the G-protein moves by stages to the plasma membrane. Ultrathin frozen sections of 0-45-infected cells were prepared and indirectly immunolabeled for the G-protein at different times after the temperature shift. By 3 min, the G-protein was seen at high density in saccules at one face of the Golgi apparatus. No large accumulation of G-protein-containing vesicles were observed near this entry face, but a few 50-70-mm electron-dense vesicular structures labeled for G-protein were observed that might be transfer vesicles between the rough endoplasmic reticulum and the Golgi complex. At blebbed sites on the nuclear envelope at these early times there was a suggestion that the G-protein was concentrated, these sites perhaps serving as some of the transitional elements for subsequent transfer of the G-protein from the rough endoplasmic reticulum to the Golgi complex. By 3 min after its initial asymmetric entry into the Golgi complex, the G-protein was uniformly distributed throughout all the saccules of the complex. At later times, after the G-protein left the Golgi complex and was on its way to the plasma membrane, a new class of G-protein-containing vesicles of approximately 200-nm diameter was observed that are probably involved in this stage of the transport process. These data are discussed, and the further prospects of this experimental approach are assessed.  相似文献   

18.
Small GTP-binding proteins of the rab family have been implicated as regulators of membrane traffic along the biosynthetic and endocytic pathways in eukaryotic cells. We have investigated the localization and function of rab8, closely related to the yeast YPT1/SEC4 gene products. Confocal immunofluorescence microscopy and immunoelectron microscopy on filter-grown MDCK cells demonstrated that, rab8 was localized to the Golgi region, vesicular structures, and to the basolateral plasma membrane. Two-dimensional gel electrophoresis showed that rab8p was highly enriched in immuno-isolated basolateral vesicles carrying vesicular stomatitis virus-glycoprotein (VSV-G) but was absent from vesicles transporting the hemagglutinin protein (HA) of influenza virus to the apical cell surface. Using a cytosol dependent in vitro transport assay in permeabilized MDCK cells we studied the functional role of rab8 in biosynthetic membrane traffic. Transport of VSV-G from the TGN to the basolateral plasma membrane was found to be significantly inhibited by a peptide derived from the hypervariable COOH-terminal region of rab8, while transport of the influenza HA from the TGN to the apical surface and ER to Golgi transport were unaffected. We conclude that rab8 plays a role in membrane traffic from the TGN to the basolateral plasma membrane in MDCK cells.  相似文献   

19.
We examined the uptake and fate of four horseradish peroxidase (HRP) isozymes (Type VI, VII, VIII, and IX) in isolated pancreatic acinar cells. The pattern of uptake was similar for all the isozymes examined, with the exception of Type IX. Very little Type IX HRP was internalized by the cells, and what endocytosis did occur was primarily from the apical cell surface in coated vesicles. In contrast, HRP Type VI, VII, and VIII appeared to be endocytosed largely at the basolateral cell surface. Initially, the tracer was found in smooth vesicles and tubules near the plasma membrane. The tubules resembled the basal lysosomes known to be present in these cells. At the early time points, HRP reaction product was also present in multivesicular bodies (MVBs). By 60 min, the HRP was localized in MVBs, vesicles, and tubules adjacent to the Golgi apparatus. By 12 hr after exposure to the isozymes, the tracer was present in small apical vesicles. At no time could reaction product be localized in the rough endoplasmic reticulum, Golgi saccules, or secretory granules. The results of this study suggest that the charge of a soluble-phase marker has little effect on its uptake or intracellular distribution.  相似文献   

20.
The rate of bulk flow from the Golgi to the plasma membrane   总被引:6,自引:0,他引:6  
A truncated analog of the backbone of sphingomyelin and glycolipids was synthesized. This truncated C8C8 ceramide was soluble in water (but was still able to cross cell membranes) and was utilized by the Golgi apparatus of living cells to produce water-soluble truncated phospholipids and glycolipids that were then secreted into the medium. Sphingomyelin is synthesized in a proximal (likely the cis) Golgi compartment. At 37 degrees C in CHO cells, the sphingomyelin analog is secreted with a half time of about 10 min. With this rate of bulk flow, no special signal is needed to pass through the Golgi to the plasma membrane. At 30 degrees C the half time of secretion of a lumenal ER marker is about 18 min, and that of the truncated sphingomyelin is about 14 min. Comparison of these rates sets an upper limit of about 4 min for half of the ER to be drained into the proximal Golgi at 30 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号