首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunization with superantigen in vivo induces transient activation of superantigen-specific T cells, followed by a superantigen-nonresponsive state. In this study, using a TCR alpha knock-in mouse in which the knock-in alpha-chain can be replaced with endogenous alpha-chain through secondary rearrangement, we show that immunization of superantigen changes the TCR alpha-chain expression on peripheral superantigen-specific T cells, induces expression of recombination-activating genes, and generates DNA double-strand breaks at the TCR alpha-chain locus. These results suggest that viral superantigens are capable of inducing peripheral TCR revision. Our findings thus provide a new perspective on pathogen-immune system interaction.  相似文献   

2.
Peripheral CD4(+)Vβ5(+) T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of postrevision CD4(+)Vβ5(-) T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the postrevision population. In this study, we investigate the role of Bcl-2-interacting mediator of cell death (Bim)-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim-deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4(+) T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR-expressing cells are TCR revision intermediates and that the population of RAG-expressing, revising CD4(+) T cells is increased in Bim-deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the postrevision repertoire.  相似文献   

3.
Using TCR V beta 5 transgenic mice as a model system, we demonstrate that the induction of peripheral tolerance can mold the TCR repertoire throughout adult life. In these mice, three distinct populations of peripheral T cells are affected by chronic selective events in the lymphoid periphery. First, CD4+V beta 5+ T cells are deleted in the lymphoid periphery by superantigens encoded by mouse mammary tumor viruses-8 and -9 in an MHC class II-dependent manner. Second, mature CD8+V beta 5+ T cells transit through a CD8lowV beta 5low deletional intermediate during tolerance induction by a process that depends upon neither mouse mammary tumor virus-encoded superantigens nor MHC class II expression. Third, a population of CD4-CD8-V beta 5+ T cells arises in the lymphoid periphery in an age-dependent manner. We analyzed the TCR V alpha repertoire of each of these cellular compartments in both V beta 5 transgenic and nontransgenic C57BL/6 mice as a function of age. This analysis revealed age-related changes in the expression of V alpha families among different cellular compartments, highlighting the dynamic state of the peripheral immune repertoire. Our work indicates that the chronic processes maintaining peripheral T cell tolerance can dramatically shape the available TCR repertoire.  相似文献   

4.
Mouse CD4(+)Vbeta5(+) T cells recognize a peripherally expressed superantigen encoded by an endogenous retrovirus. Ag encounter tolerizes the mature CD4 T cell compartment, either by deletion of autoreactive cells or by TCR revision. This latter process is driven by TCRbeta rearrangement through RAG activity and results in the rescue of cells expressing novel TCRs that no longer recognize the tolerogen. Consistent with the notion that revising T cells represent a distinct peripheral T cell population, we now show that these lymphocyte blasts express a hybrid effector/memory phenotype and are not undergoing cell division. A population of revising T cells is CD40(+), expresses the germinal center (GC) marker CXCR5, and is Vbeta5(low)Thy-1(low). Histology reveals that, consistent with their surface Ag phenotype, T cells undergoing TCR revision are enriched in splenic GCs. These data demonstrate that TCR revision is a multistep tolerance pathway supported by the unique microenvironment provided by GCs.  相似文献   

5.
6.
T cell receptor revision does not solely target recent thymic emigrants   总被引:14,自引:0,他引:14  
CD4(+)Vbeta5(+) T cells enter one of two tolerance pathways after recognizing a peripherally expressed superantigen encoded by an endogenous retrovirus. One pathway leads to deletion, while the other, termed TCR revision, results in cellular rescue upon expression of an alternate TCR that no longer recognizes the tolerogen. TCR revision requires the rearrangement of novel TCR beta-chain genes and depends on recombinase-activating gene (RAG) expression in peripheral T cells. In line with recent findings that RAG(+) splenic B cells are immature cells that have maintained RAG expression, it has been hypothesized that TCR revision is limited to recent thymic emigrants that have maintained RAG expression and TCR loci in a recombination-permissive configuration. Using mice in which the expression of green fluorescent protein is driven by the RAG2 promoter, we now show that in vitro stimulation can drive reporter expression in noncycling, mature, peripheral CD4(+) T cells. In addition, thymectomized Vbeta5 transgenic RAG reporter mice are used to demonstrate that TCR revision can target peripheral T cells up to 2 mo after thymectomy. Both sets of experiments strongly suggest that reinduction of RAG genes triggers TCR revision. Approximately 3% of CD4(+)Vbeta5(+) T cells in thymectomized Vbeta5 transgenic reporter mice have undergone TCR revision within the previous 4-5 days. TCR revision can also occur in Vbeta5(+) T cells from nontransgenic mice, illustrating the relevance of this novel tolerance mechanism in unmanipulated animals.  相似文献   

7.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

8.
Phenotypic allelic exclusion at the TCRalpha locus is developmentally regulated in thymocytes. Many immature thymocytes express two cell surface alpha-chain species. Following positive selection, the vast majority of mature thymocytes and peripheral T cells display a single cell surface alpha-chain. A posttranslational mechanism occurring at the same time as positive selection and TCR up-regulation leads to this phenotypic allelic exclusion. Different models have been proposed to explain the posttranslational regulation of the alpha-chain allelic exclusion. In this study, we report that allelic exclusion is not regulated by competition between distinct alpha-chains for a single beta-chain, as proposed by the dueling alpha-chain model, nor by limiting CD3 zeta-chain in mature TCR(high) thymocytes. Our data instead favor the selective retention model where the positive selection signal through the TCR leads to phenotypic allelic exclusion by specifically maintaining cell surface expression of the selected alpha-chain while the nonselected alpha-chain is internalized. The use of inhibitors specific for Lck and/or other Src kinases indicates a role for these protein tyrosine kinases in the signaling events leading to the down-regulation of the nonselectable alpha-chain. Loss of the ubiquitin ligase/TCR signaling adapter molecule c-Cbl, which is important in TCR down-modulation and is a negative regulator of T cell signaling, leads to increased dual alpha-chain expression on the cell surface of double-positive thymocytes. Thus, not only is there an important role for TCR signaling in causing alpha-chain allelic exclusion, but differential ubiquitination by c-Cbl may be an important factor in causing only the nonselected alpha-chain to be down-modulated.  相似文献   

9.
In Vbeta5 transgenic mice, mature Vbeta5(+)CD4(+) T cells are tolerized upon recognition of a self Ag, encoded by a defective endogenous retrovirus, whose expression is confined to the lymphoid periphery. Cells are driven by the tolerogen to enter one of two tolerance pathways, deletion or TCR revision. CD4(+) T cells entering the former pathway are rendered anergic and then eliminated. In contrast, TCR revision drives gene rearrangement at the endogenous TCR beta locus and results in the appearance of Vbeta5(-), endogenous Vbeta(+), CD4(+) T cells that are both self-tolerant and functional. An analysis of the molecules that influence each of these pathways was conducted to understand better the nature of the interactions that control tolerance induction in the lymphoid periphery. These studies reveal that deletion is efficient in reconstituted radiation chimeras and is B cell, CD28, inducible costimulatory molecule, Fas, CD4, and CD8 independent. In contrast, TCR revision is radiosensitive, B cell, CD28, and inducible costimulatory molecule dependent, Fas and CD4 influenced, and CD8 independent. Our data demonstrate the differential regulation of these two divergent tolerance pathways, despite the fact that they are both driven by the same tolerogen and restricted to mature CD4(+) T cells.  相似文献   

10.
11.
CD4(+) T cells respond to peripheral endogenous superantigen stimulation by undergoing deletion or TCR revision. The latter involves RAG re-expression, TCR gene rearrangement, and expression of a novel TCR. TCR-revised T cells are functional and express a diverse TCR repertoire. Because TCR revision harbors the potential to create self-reactivity, it is important to explore whether T cells known to be self-reactive (regulatory T cells) or those involved in autoimmunity (Th17 cells) arise from TCR revision. Interestingly, we observed that Foxp3(+) cells are excluded from revising their TCR and that only a small fraction of postrevision cells expresses Foxp3. In contrast, Th17 cells are 20 times more frequent among revised than among C57BL/6 CD4(+) T cells, indicating that postrevision cells are biased toward the Th17 lineage. The link between Th17 differentiation and TCR revision might be highly relevant to the role of Th17 cells in promoting autoimmunity.  相似文献   

12.
NK T cells are a unique lymphocyte population that have developmental requirements distinct from conventional T cells. Mice lacking the tyrosine kinase Fyn have 5- to 10-fold fewer mature NK T cells. This study shows that Fyn-deficient mice have decreased numbers of NK1.1(-) NK T cell progenitors as well. 5-Bromo-2'-deoxyuridine-labeling studies indicate that the NK T cells remaining in fyn(-/-) mice exhibit a similar turnover rate as wild-type cells. The fyn(-/-) NK T cells respond to alpha-galactosylceramide, a ligand recognized by NK T cells, and produce cytokines, but have depressed proliferative capacity. Transgenic expression of the NK T cell-specific TCR alpha-chain Valpha14Jalpha18 leads to a complete restoration of NK T cell numbers in fyn(-/-) mice. Together, these results suggest that Fyn may have a role before alpha-chain rearrangement rather than for positive selection or the peripheral upkeep of cell number. NK T cells can activate other lymphoid lineages via cytokine secretion. These secondary responses are impaired in Fyn-deficient mice, but occur normally in fyn mutants expressing the Valpha14Jalpha18 transgene. Because this transgene restores NK T cell numbers, the lack of secondary lymphocyte activation in the fyn-mutant mice is due to the decreased numbers of NK T cells present in the mutant, rather than an intrinsic defect in the ability of the other fyn(-/-) lymphoid populations to respond.  相似文献   

13.
CD4(+)Vβ5(+) peripheral T cells in C57BL/6 mice respond to encounter with a peripherally expressed endogenous superantigen by undergoing either deletion or TCR revision. In this latter process, cells lose surface Vβ5 expression and undergo RAG-dependent rearrangement of endogenous TCRβ genes, driving surface expression of novel TCRs. Although postrevision CD4(+)Vβ5(-)TCRβ(+) T cells accumulate with age in Vβ5 transgenic mice and bear a diverse TCR Vβ repertoire, it is unknown whether they respond to homeostatic and antigenic stimuli and thus may benefit the host. We demonstrate in this study that postrevision cells are functional. These cells have a high rate of steady-state homeostatic proliferation in situ, and they undergo extensive MHC class II-dependent lymphopenia-induced proliferation. Importantly, postrevision cells do not proliferate in response to the tolerizing superantigen, implicating TCR revision as a mechanism of tolerance induction and demonstrating that TCR-dependent activation of postrevision cells is not driven by the transgene-encoded receptor. Postrevision cells proliferate extensively to commensal bacterial Ags and can generate I-A(b)-restricted responses to Ag by producing IFN-γ following Listeria monocytogenes challenge. These data show that rescued postrevision T cells are responsive to homeostatic signals and recognize self- and foreign peptides in the context of self-MHC and are thus useful to the host.  相似文献   

14.
The Ag receptor of the T lymphocyte is composed of an alphabeta heterodimer. Both alpha- and beta-chains are products of the somatic rearrangement of V(D)J segments encoded on the respective loci. During T cell development, beta-chain rearrangement precedes alpha-chain rearrangement. The mechanism of allelic exclusion ensures the expression of a single beta-chain in each T cell, whereas a large number of T cells express two functional alpha-chains. Here we demonstrate evidence that TCR alpha rearrangement is initiated by rearranging a 3' Valpha segment and a 5' Jalpha segment on both chromosomes. Rearrangement then proceeds by using upstream Valpha and downstream Jalpha segments until it is terminated by successful positive selection. This ordered and coordinated rearrangement allows a single thymocyte to sequentially express multiple TCRs with different specificities to optimize the efficiency of positive selection. Thus, the lack of allelic exclusion and TCR alpha secondary rearrangement play a key role in the formation of a functional T cell repertoire.  相似文献   

15.
Allelic exclusion of immune receptor genes (and molecules) is incompletely understood. With regard to TCRalphabeta lineage T cells, exclusion at the tcr-b, but not tcr-a, locus seems to be strictly controlled at the locus rearrangement level. Consequently, while nearly all developing TCRalphabeta thymocytes express a single TCRbeta protein, many thymocytes rearrange and express two different TCRalpha chains and, thus, display two alphabetaTCRs on the cell surface. Of interest, the number of such dual TCR-expressing cells is appreciably lower among the mature T cells. To understand the details of TCR chain regulation at various stages of T cell development, we analyzed TCR expression in mice transgenic for two rearranged alphabetaTCR. We discovered that in such TCR double-transgenic (TCRdTg) mice peripheral T cells were functionally monospecific. Molecularly, this monospecificity was due to TCRalpha exclusion: one transgenic TCRalpha protein was selectively down-regulated from the thymocyte and T cell surface. In searching for the mechanism(s) governing this selective TCRalpha down-regulation, we present evidence for the role of protein tyrosine kinase signaling and coreceptor involvement. This mechanism may be operating in normal thymocytes.  相似文献   

16.
Current models of T cell activation focus on the kinetics of TCR-ligand interactions as the central parameter governing T cell responsiveness. However, these kinetic parameters do not adequately predict all T cell behavior, particularly the response to antagonist ligands. Recent studies have demonstrated that TCR number is a critical parameter influencing the responses of CD4(+) T cells to weak agonist ligands, and receptor density represents an important means of regulating tissue responsiveness in other receptor ligand systems. To systematically address the impact of TCR expression on CD8(+) T cell responses, mAbs to the TCR alpha-chain and T cells expressing two TCR species were used as two different methods to manipulate the number of available TCRs on P14 and OT-I transgenic T cells. Both methods of TCR reduction demonstrated that the efficacy of antagonist peptides was significantly reduced on T cells bearing low numbers of available receptors. In addition, the ability of weak agonists to induce proliferation was critically dependent on the availability of high numbers of TCRs. Therefore, in this report we show that TCR density is a major determinant of CD8(+) T cell reactivity to weak agonist and antagonist ligands but not agonist ligands.  相似文献   

17.
18.
In Vbeta5 transgenic mice, the age-dependent accumulation of Vbeta5(-)CD4(+) T cells expressing endogenous Vss elements represents an exception to the rule of strict allelic exclusion at the TCRbeta locus. The appearance of these cells is limited to the lymphoid periphery and is driven by a peripherally expressed tolerogen. Expression of the lymphoid-specific components of the recombinase machinery and the presence of recombination intermediates strongly suggest that TCR revision rescues tolerogen-reactive peripheral T cells from deletion. Here, we report that the appearance of Vbeta5(-)CD4(+) T cells is CD28-dependent. In addition, we find that the TCR repertoire of this unusual population of T cells in individual Vbeta5 transgenic mice is surprisingly diverse, both at the level of surface protein and at the nucleotide level within a given family of V(D)Jbeta rearrangements. This faithful recreation of the nontransgenic repertoire suggests that endogenous Vbeta-expressing populations do not arise from expansion of an initially rare subset. Furthermore, the undersized N regions in revised TCR genes distinguish these sequences from those generated in the adult thymus. The diversity of the revised TCRs, the minimal mouse-to-mouse variation in the expressed endogenous Vbeta repertoire, the atypical length of junctional sequences, and the CD28 dependence of the accumulation of Vbeta5(-)CD4(+) T cells all point to their extrathymic origin. Thus, tolerogen-driven receptor revision in peripheral T cells can expand the TCR repertoire extrathymically, thereby contributing to the flexibility of the immune repertoire.  相似文献   

19.
Adaptation of the T cell activation threshold may be one mechanism to control autoreactivity. To investigate its occurrence in vivo, we engineered a transgenic mouse model with increased TCR-dependent excitability by expressing a Zap70 gain-of-function mutant (ZAP-YEEI) in postselection CD8 thymocytes and T cells. Increased basal phosphorylation of the Zap70 substrate linker for activation of T cells was detected in ZAP-YEEI-bearing CD8 T cells. However, these cells were not activated, but had reduced levels of TCR and CD5. Moreover, they produced lower cytokine amounts and showed faster dephosphorylation of linker for activation of T cells and ERK upon activation. Normal TCR levels and cytokine production were restored by culturing cells in the absence of TCR/spMHC interaction, demonstrating dynamic tuning of peripheral T cell responses. The effect of avidity for self-ligand(s) on this sensory adaptation was studied by expressing ZAP-YEEI in P14 or HY TCR transgenic backgrounds. Unexpectedly, double-transgenic animals expressed ZAP-YEEI prematurely in double-positive thymocytes, but no overt alteration of selection processes was observed. Instead, modifications of TCR and CD5 expression due to ZAP-YEEI suggested that signal tuning occurred during thymic maturation. Importantly, although P14 x ZAP-YEEI peripheral CD8 T cells were reduced in number and showed lower Ag-induced cytokine production and limited lymphopenia-driven proliferation, the peripheral survival/expansion and Ag responsiveness of HY x ZAP-YEEI cells were enhanced. Our data provide support for central and peripheral sensory T cell adaptation induced as a function of TCR avidity for self-ligands and signaling level. This may contribute to buffer excessive autoreactivity while optimizing TCR repertoire usage.  相似文献   

20.
The molecular mechanisms ensuring the ordered expression of TCR genes are critical for proper T cell development. The mouse TCR alpha-chain gene locus contains a cis-acting locus control region (LCR) that has been shown to direct integration site-independent, lymphoid organ-specific expression of transgenes in vivo. However, the fine cell type specificity and developmental timing of TCRalpha LCR activity are both still unknown. To address these questions, we established a transgenic reporter model of TCRalpha LCR function that allows for analysis of LCR activity in individual cells by the use of flow cytometry. In this study we report the activation of TCRalpha LCR activity at the CD4-CD8-CD25-CD44- stage of thymocyte development that coincides with the onset of endogenous TCRalpha gene rearrangement and expression. Surprisingly, TCRalpha LCR activity appears to decrease in peripheral T cells where TCRalpha mRNA is normally up-regulated. Furthermore, LCR-linked transgene activity is evident in gammadelta T cells and B cells. These data show that the LCR has all the elements required to reliably reproduce a developmentally correct TCRalpha-like expression pattern during thymic development and unexpectedly indicate that separate gene regulatory mechanisms are acting on the TCRalpha gene in peripheral T cells to ensure its high level and fine cell type-specific expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号