首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary It has been shown that indoleacetic acid (IAA) does not occur in developing grains of Hordeum vulgare L. (barley), but that an unidentified indolic compound does. This compound, designated A, was also found to be a product of the metabolism of exogenous IAA by barley. The expression of the gibberellic acid effect was delayed for at least 8 h if grains were imbibed in a solution of IAA, and during this time, the IAA was metabolised. The enzyme system involved could be peroxidase, which was active in the grains at all stages of their development and at maturity, and partially purified extracts of peroxidase were found to have considerable IAA oxidase activity.Abbreviations DMABA dimethyl aminobenzaldehyde - dMACA Dimethyl amino cinnamylaldehyde - GA gibberellic acid - IAA indole acetic acid  相似文献   

2.
Two phases are distinguished in the α-amylase production in barley (Hordeum vulgare) grains. There is an increase in activity extended to the third or fourth day of germination, then a slight decrease follows. This decrease is accelerated by kinetin while it is prevented by IAA applied at the top of the embryo coleoptile. IAA reverses partially the kinetin action. IAA applied in the germination medium has practically no effect. Removal of the coleoptile stops further increase in α-amylase activity and induces complete insensitivity to hormone treatment. The results indicate that auxin metabolism in the coleoptile participates in the control of α-amylase evolution in the barley grain and that kinetin could act through auxin metabolism in this coleoptile.  相似文献   

3.
A beta-glucosidase and a beta-galactosidase were purified to homogeneity from barley meal. The beta-glucosidase is a single basic polypeptide (pI greater than 8.5) with an Mr of 53,000 acting optimally at pH 4.5-5.0. The beta-galactosidase is composed of two subunits with an Mr of 42,000 and 33,000, respectively, and is acidic in nature (pI less than 5.7). Both enzymes are able to hydrolyze lactose with Michaelis constants lower than the concentration of this sugar in milk whey. Consequently, barley seems to be an inexpensive source of lactose-splitting enzymes.  相似文献   

4.
Barley grains contain hydrocarbons, including a material indistinguishable from ent-kaurene by GLC, and which after appropriate chemical conversions contain material behaving like ent-kauran-16,17-diol, ent-kaurene norketone and ent-17-nor-kaurane on TLC and GLC. The presence of ent-kaurene was confirmed by conversion to ent-kauran-16-ol and, following formation of acetate-[3H], recrystallization to constant specific activity with unlabelled carrier. In the initial ca. 15 hr of germination, preceding the rise in endogenous gibberellins, the level of ent-kaurene falls. Exogenous ent-kaurene-[14C] was not metabolized by intact barley grains. ent-Kauran-16,17-epoxide was formed non-enzymically by boiled extracts. Unboiled homogenates also formed ent-kauran-17-ol and ent-kauran-16,17-diol. The diol appeared to be formed from the epoxide, but the ent-kauran-17-ol was not. No recognized gibberellin precursors were detected. Nevertheless, endogenous ent-kaurene may be the stored biosynthetic precursor of gibberellins in germinating barley grains.  相似文献   

5.
The effect of gibberellic acid and Ca2+ on the accumulation of α-amylase mRNAs in aleurone layers of barley (Hordeum vulgare L. cv Himalaya) was studied using cDNA clones containing sequences of mRNAs for the high and low isoelectric point (pI) α-amylases. There is no significant hybridization between the two α-amylase cDNA clones under the hybridization and washing conditions employed. These clones were therefore used to monitor levels of mRNAs for high and low pI α-amylases. It is shown that although the synthesis of the high pI α-amylase proteins depends on the presence of Ca2+ in the incubation medium, the accumulation of mRNA for this group occurs to the same degree in the presence or the absence of Ca2+. The accumulation of low pI α-amylase mRNA is also not affected by the presence or absence of Ca2+ in the incubation medium. These results establish gibberellic acid, not Ca2+, as the principal regulator of α-amylase mRNA accumulation in barley aleurone, while Ca2+ controls high pI α-amylase synthesis at a later step in the biosynthetic pathway.  相似文献   

6.
Effect of different concentrations of indole acetic acid (IAA) under varying soil water deficit conditions on two barley cultivars viz. B-99094 and Jau-87 was investigated in soil filled earthen pots. There were six treatments including control each with four replicates. Three concentrations of IAA (0, 15 and 30 mg l−1) were applied as foliar spray 30 days after germination. After hormone application, half of the pots were subjected to one cycle of water stress (withholding of water till incipient wilting), followed by regular watering. Plant height, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency relative water content, dry biomass, and grain yield/plant were significantly reduced by water stress. However, IAA treatments alleviated the adverse effect of water stress and successful in enhancing the plant growth and yield of barley cultivars. Barley cultivar Jau-87 performed better than B-99094. IAA application␣was effective in enhancing growth and photosynthetic efficiency of barley both under normal and water stress conditions.  相似文献   

7.
The influence of endogenous root nodules phenolic acids on indoleacetic acid (IAA) production by its symbiont (Rhizobium) was examined. The root nodules contain higher amount of IAA and phenolic acids than non-nodulated roots. Presence of IAA metabolizing enzymes, IAA oxidase, peroxidase, and polyphenol oxidase indicate the metabolism of IAA in the nodules and roots. Three most abundant endogenous root nodule phenolic acids (protocatechuic acid, 4-hydroxybenzaldehyde and p-coumaric acid) have been identified and their effects on IAA production by the symbiont have been studied in l-tryptophan supplemented yeast extract basal medium. Protocatechuic acid (1.5 μg ml−1) showed maximum stimulation (2.15-fold over control) of IAA production in rhizobial culture. These results indicate that the phenolic acids present in the nodule might serve as a stimulator for IAA production by the symbiont (Rhizobium). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

8.
The supernatants obtained after the centrifugation of the homogenates of healthy barley leaves and the extracts from the surface of barley roots can enzymatically oxidize exogenously supplied IAA in the presence of Mn2+ ions and 2,4-dichlorophenol. On the contrary, IAA oxidation is strongly inhibited or does not occur at all in the supernatants from the leaves infected with powdery mildew (Erysiphe graminis DC.) and in the extracts from the surface of both healthy and diseased leaves. The supernatants from diseased leaves inhibit IAA oxidation proportionally to the amount of the added supernatant. That indicates that natural inhibitors formed in the course of infection are present. In the case of the roots, the enzyme obviously penetrates to the surface of the organ. The presence of the enzyme on the surface of the leaves could not be proved either for its low concentration or owing to the presence of the above-mentioned inhibitors.  相似文献   

9.
Hormonal Regulation of Pedicel Abscission in Begonia Flower Buds   总被引:1,自引:0,他引:1  
In order to analyse the hormonal regulation of flower bud shedding in Begonia, levels of indoleacetic acid (IAA), abscisic acid (ABA) and ethylene were determined in buds and pedicels. The translocation and metabolism of 14C-labeled IAA in pedicel segments were also studied. In a monoecious Begonia fuchsioides hybrid, abscising male flower buds contain about 1% of the IAA present in non-abscising female flowers. In a male Begonia davisii hybrid, the seasonal variation in bud drop coincides with changes in the IAA content of the buds, while also the release of IAA from the bud to the pedicel is hampered. Abscission zones of these pedicels always contain abscission promoting ethylene concentrations. The tissue is prevented from responding with abscission by IAA from the flower buds. The buds also contain ABA but without influencing abscission considerably. Pretreatment with ethylene or ABA does not affect IAA transport in pedicel segments. The rate of this transport is 4–6 mm × h–1:; the capacity increases with the transverse area. In young segments, IAA is decarboxylated and also otherwise metabolized.  相似文献   

10.
Genetic transformation was studied on spring barley mutants carrying the recessive mutant allele of waxy locus.Analysis of the pollen grains of 38 control plants that were not subjected to any treatment showed that in the whole sample there was no mutant grain that stained black with iodine. It is also indicative of the genotypical purity of the original waxy plants.After mechanical damage (puncture in the top and in the side of a grain) there were 5 pollen grains fo wild type among 124000 mutant grains. Injection of grains with 2 μl distilled water led to the emergence of pollen grains that stained black at a frequency similar to that after puncture. The overall frequency of wild barley pollen grains for all control variants was 2.2·10−5.The frequencies of wild-type pollen grains were practically the same after injections of DNA from E. coli, extensively deproteinized highly polymeric DNA from barley leaves or slightly deproteinized low polymeric DNA from barley endospermal material.There was no marked increase of the wild pollen frequency after the injection of slightly deproteinized low polymeric DNA from the endospernal material (2.2·10−5 in the control versus 3.7·10−5 in the experiment).The analysis of the material for the amount of altered pollen grains in invidual plants also unequivocally demonstrated significant differences between the control and the experiment. In the first four variants there was no plant having over these altered pollen grains among the 2500 mutant grains examined. In the variants with injections of barley DNA differing in the extent of deproteinization and in polymerisation only in one case (of low polymeric slightly deproteinized DNA) there were no plants with many altered pollen grains. In all the other variants there were plants having much pollen of wild type.The largest number of plants with a great many affected pollen grains occurred in the variant with highly polymeric DNA from the endospermal material not subjected to deproteinization with chloroform and isoamyl alcohol.  相似文献   

11.
The enzymatic synthesis of indole-3-acetic acid (IAA) from indole by an in vitro preparation from maize (Zea mays L.) that does not use tryptophan (Trp) as an intermediate is described. Light-grown seedlings of normal maize and the maize mutant orange pericarp were shown to contain the necessary enzymes to convert [14C]indole to IAA. The reaction was not inhibited by unlabeled Trp and neither [14C]Trp nor [14C]serine substituted for [14C]indole in this in vitro system. The reaction had a pH optimum greater than 8.0, required a reducing environment, and had an oxidation potential near that of ascorbate. The results obtained with this in vitro enzyme preparation provide strong, additional evidence for the presence of a Trp-independent IAA biosynthesis pathway in plants.  相似文献   

12.
13.
Protoplast preparations from barley (Hordeum vulgare L.) enzymatically converted [5-3H]tryptophan to [3H]indole-3-acetic acid (IAA). Both a chloroplast and a crude cytoplasmic fraction, isolated from protoplasts that had previously been fed [5-3H]tryptophan, contained [3H]IAA. Chloroplast and cytoplasmic preparations, isolated from protoplasts and thereafter incubated with [5-3H]tryptophan, also synthesized [3H]IAA, although, in both instances the pool size was less than 50% of that detected in the in-vivo feeds. There were no significant differences in the amounts of [3H]IAA that accumulated in protoplast and chloroplast preparations incubated in light and darkness.Abbreviations HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - RC radiocounting  相似文献   

14.
It is shown that among various grains, wheat and barley contain in the endosperm a toxic substance to brewing yeast, and the substance is easily extracted with a dilute sulfuric acid solution. One unit of the toxicity is defined as the lowest amount of the extract which inhibits the yeast growth in 10 ml of wort medium. Two or more units of the toxicity not only inhibited the yeast growth, but also caused the death of yeast cells. Although the toxic effect was not observed when divalent metallic ions such as Ca2+, Zn2+ or Fe2+ were present at a concentration of 5 × l0?3 mole or more, the toxicity could be recovered by the addition of ethylene-diamine-tetra-acetate (EDTA). Genetic relationships on the content of the toxicity in wheat and barley and sensitivity of yeast strains to the toxicity are also presented.  相似文献   

15.
Lipoxygenase activities in ungerminated and germinating barley grains were found to be associated exclusively with the embryos. A lipoxygenase was extracted from ungerminated embryos and partially purified by fractional precipitation with ammonium sulfate and gel-filtration. Both the crude extracts and the purified preparation appeared to contain only a fatty acid type lipoxygenase which mainly converted linolele acid to 9-hydroperoxy, trans-10, cis-12-octadecadienoic acid. The purified enzyme was inhibited by its own products, hydroperoxides, but not by 1 mM cyanide, EDTA, Hg2+ or Cu2+.  相似文献   

16.
The data obtained characterize the changes in the contents of endogenous phytohormones (IAA, cytokinins, GA, and ABA) in germinating pollen grains and growing pollen tubes of a self-compatible clone of petunia (sPetunia hybrida L.) within an 8-h period under in vitro conditions. The hydration and initiation of germination of pollen grains brought the ABA content down to a zero level, while the levels of GA, IAA, and cytokinins increased 1.5–2-fold. Later, in the growing pollen tubes, the GA content increased twofold, while the levels of IAA and cytokinins decreased. The exogenous ABA and GA3 considerably promoted pollen germination and pollen tube growth; however, only the treatment with GA3 produced the maximum length of pollen tubes. The exogenous IAA promoted and the exogenous cytokinins hindered the growth of pollen tubes. The membrane potential, as assessed with a potential-sensitive dye diS-C3-(5), considerably increased in the pollen grains treated with ABA and benzyladenine, whereas IAA and GA3 did not practically affect it. The authors conclude that the mature pollen grains contain the complete set of hormones essential for pollen germination and pollen tube growth. ABA, GA, and IAA together with cytokinins control the processes of pollen grain hydration, germination, and pollen tube growth, respectively.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 584–590.Original Russian Text Copyright © 2005 by Kovaleva, Zakharova, Minkina, Timofeeva, Andreev.  相似文献   

17.
18.
Tritiated 5-azidoindole-3-acetic acid (5-N3-[7-3H]IAA), a photoaffinity labeling agent, was used to photolabel proteins of a crude microsomal preparation from maize (Zea mays L., Bear Hybrid, WF9 × BR38) coleoptile. Approximately 50% of the bound radioactivity was solubilized in 5 molar urea containing Triton X-100, and the extract was fractionated using a variety of techniques. High performance liquid chromatography demonstrated that, although many membrane proteins incorporated tritiated label, only a few showed reduced incorporation in the presence of excess indole-3-acetic acid. By contrast, no detectable reduction in incorporation was observed in the presence of excess naphthalene-1-acetic acid. Results from isoelectric focusing gel electrophoresis indicate that the proteins that showed reduced incorporation of photolyzed 5-N3-[7-3H]IAA in the presence of IAA fell into two main groups: one which focuses between pH 5.2 and 5.7 (pI 4.8-5.3) and another around pH 6.2 (pI 5.8). In sodium dodecylsulfate polyacrylamide gel electrophoresis, the proteins migrated as four bands with apparent molecular weights of 60, 49, 45, and 37 kilodaltons. The auxin-transport inhibitor, 2,3,5-triiodobenzoic acid, competes for the labeling by 5-N3-[7-3H]IAA, suggesting that some of these proteins may be involved in auxin transport.  相似文献   

19.
Homogenates of epicotyls or roots of nonsterile pea plants incubated with tryptophan produce IAA within 1 to 4 hours, which was detected by means of the Avena curvature test and thin layer chromatography. Three results prove this short-term IAA production to be mainly caused by epiphytic bacteria: 1) Homogenates of sterile plant parts catalyze a conversion of tryptophan to IAA, a hundredfold lower. 2) Chloramphenicol or streptomycin very actively reduce the IAA gain obtained with nonsterile homogenates. 3) Washing solutions of nonsterile plant parts which do not contain plant enzymes but only epiphytic bacteria, produce IAA from tryptophan, too. IAA synthesis from tryptophan in vitro by enzymes of the pea plant occurs with lower intensity than hitherto known; possibly it is physiologically unimportant. It is discussed to what extent the hitherto existing research work about the IAA biogenesis in higher plants might be incriminated by disregarding tbe rôle of epiphytic bacteria.  相似文献   

20.
Sequeira L  Mineo L 《Plant physiology》1966,41(7):1200-1208
Extracts from roots of Nicotiana tabacum L var. Bottom Special contain oxidative enzymes capable of rapid degradation of indoleacetic acid (IAA) in the presence of Mn2+ and 2, 4-dichlorophenol. Purification of IAA oxidase was attempted by means of ammonium sulfate fractionation and elution through a column of SE-Sephadex. Two distinct fractions, both causing rapid oxidation of IAA in the absence of H2O2, were obtained. One fraction exhibited high peroxidase activity when guaiacol was used as the electron donor; the other did not oxidase guaiacol. Both enzyme fractions caused similar changes in the UV spectrum of IAA; absorption at 280 mμ was reduced, while major absorption peaks appeared at 254 and 247 mμ. The kinetics of IAA oxidation by both fractions were followed by measuring the increase in absorption at 247 mμ. The peroxidase-containing fraction showed no lag or a slight lag which could be eliminated by addition of H2O2 (3 μmoles/ml). The peroxidase-free fraction showed a longer lag, but addition of similar amounts of H2O2 inhibited the rate of IAA oxidation and did not remove the lag. With purified preparations, IAA oxidation was stimulated only at low concentrations of H2O2 (0.03 μmole/ml). A comparison of Km values for IAA oxidation by the peroxidase-containing and peroxidase-free fractions suggests that tobacco roots contain an IAA oxidase which may have higher affinity for IAA and may be more specific than the general peroxidase system previously described from other plant sources. A similar oxidase is present in commercial preparations of horseradish peroxidase. It is suggested that oxidation of IAA by horseradish peroxidase may be due to a more specific component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号