首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CCL4 and CCL4L1 are two CC chemokine genes located at chromosome 17q21 whose mature proteins differ at only a single amino acid. Abundant functional information exists for CCL4, however, CCL4L1 has only recently been recognized as a distinct gene, thus information describing it is wanting. The CCL4L1 protein was synthesized in Escherichia coli and compared with the CCL4 protein. Competitive binding studies using HEK-293/CCR5 cells produced comparable EC50 values for the two proteins. Similarly, chemotaxis assays with cells expressing CCR1, CCR3, or CCR5 revealed no substantial differences. CCL4L1 was somewhat more effective at inhibiting HIV-1 replication in PBMCs than was CCL4, however the difference was not statistically significant. These data combined with the observation of individual variation in CCL4L1 gene copy number [Eur. J. Immunol. 32 (2002) 3016, Genomics 83 (2004) 735] support the contention that the CCL4 and CCL4L1 proteins have redundant functions.  相似文献   

2.
Four human homeo box-containing cDNAs isolated from mRNA of an SV40-transformed human fibroblast cell line have been regionally localized on the human gene map. One cDNA clone, c10, was found to be nearly identical to the previously mapped Hox-2.1 gene at 17q21. A second cDNA clone, c1, which is 87% homologous to Hox-2.2 at the nucleotide level but is distinct from Hox-2.1 and Hox-2.2, also maps to this region of human chromosome 17 and is probably another member of the Hox-2 cluster of homeo box-containing genes. The third cDNA clone, c8, in which the homeo box is approximately 84% homologous to the mouse Hox-1.1 homeo box region on mouse chromosome 6, maps to chromosome region 12q12----12q13, a region that is involved in chromosome abnormalities in human seminomas and teratomas. The fourth cDNA clone, c13, whose homeo box is approximately 73% homologous to the Hox-2.2 homeo box sequence, is located at chromosome region 2q31----q37. The human homeo box-containing cluster of genes at chromosome region 17q21 is the human cognate of the mouse homeo box-containing gene cluster on mouse chromosome 11. Other mouse homeo box-containing genes of the Antennapedia class (class I) map to mouse chromosomes 6 (Hox-1, proximal to the IgK locus) and 15 (Hox-3). A mouse gene, En-1, with an engrailed-like homeo box (class II) and flanking region maps to mouse chromosome 1 (near the dominant hemimelia gene). Neither of the class I homeo box-containing genes--c8 and c13--maps to a region of obvious homology to chromosomal positions of the presently known mouse homeo box-containing genes.  相似文献   

3.
An anthropoid-specific segmental duplication on human chromosome 1q22   总被引:1,自引:0,他引:1  
Segmental duplications (SDs) play a key role in genome evolution by providing material for gene diversification and creation of variant or novel functions. They also mediate recombinations, resulting in microdeletions, which have occasionally been associated with human genetic diseases. Here, we present a detailed analysis of a large genomic region (about 240 kb), located on human chromosome 1q22, that contains a tandem SD, SD1q22. This duplication occurred about 37 million years ago in a lineage leading to anthropoid primates, after their separation from prosimians but before the Old and New World monkey split. We reconstructed the hypothetical unduplicated ancestral locus and compared it with the extant SD1q22 region. Our data demonstrate that, as a consequence of the duplication, new anthropoid-specific genetic material has evolved in the resulting paralogous segments. We describe the emergence of two new genes, whose new functions could contribute to the speciation of anthropoid primates. Moreover, we provide detailed information regarding structure and evolution of the SD1q22 region that is a prerequisite for future studies of its anthropoid-specific functions and possible linkage to human genetic disorders.  相似文献   

4.
5.
6.
Copy number variations (CNVs) have been shown to contribute substantially to disease susceptibility in several inherited diseases including cancer. We conducted a genome-wide search for CNVs in blood-derived DNA from 79 individuals (62 melanoma patients and 17 spouse controls) of 30 high-risk melanoma-prone families without known segregating mutations using genome-wide comparative genomic hybridization (CGH) tiling arrays. We identified a duplicated region on chromosome 4q13 in germline DNA of all melanoma patients in a melanoma-prone family with three affected siblings. We confirmed the duplication using quantitative PCR and a custom-made CGH array design spanning the 4q13 region. The duplicated region contains 10 genes, most of which encode CXC chemokines. Among them, CXCL1 (melanoma growth-stimulating activity α) and IL8 (interleukin 8) have been shown to stimulate melanoma growth in vitro and in vivo. Our data suggest that the alteration of CXC chemokine genes may confer susceptibility to melanoma.  相似文献   

7.
8.

Background

Idiopathic pulmonary fibrosis (IPF) is a chronically progressive interstitial lung disease of unknown etiology. Previously, we have demonstrated the selective upregulation of the macrophage-derived chemokine CCL22 and the thymus activation-regulated chemokine CCL17 among chemokines, in a rat model of radiation pneumonitis/pulmonary fibrosis and preliminarily observed an increase in bronchoalveolar (BAL) fluid CCL22 levels of IPF patients.

Methods

We examined the expression of CCR4, a specific receptor for CCL22 and CCL17, in bronchoalveolar lavage (BAL) fluid cells, as well as the levels of CCL22 and CCL17, to elucidate their pathophysiological roles in pulmonary fibrosis. We also studied their immunohistochemical localization.

Results

BAL fluid CCL22 and CCL17 levels were significantly higher in patients with IPF than those with collagen vascular diseases and healthy volunteers, and there was a significant correlation between the levels of CCL22 and CCL17 in patients with IPF. CCL22 levels in the BAL fluid did not correlate with the total cell numbers, alveolar lymphocytes, or macrophages in BAL fluid. However, the CCL22 levels significantly correlated with the numbers of CCR4-expressing alveolar macrophages. By immunohistochemical and immunofluorescence analysis, localization of CCL22 and CCR4 to CD68-positive alveolar macrophages as well as that of CCL17 to hyperplastic epithelial cells were shown. Clinically, CCL22 BAL fluid levels inversely correlated with DLco/VA values in IPF patients.

Conclusion

We speculated that locally overexpressed CCL22 may induce lung dysfunction through recruitment and activation of CCR4-positive alveolar macrophages.  相似文献   

9.
Mouse complement component C1q is a serum glycoprotein which consists of six A chains, six B chains and six C chains. The three polypeptides are 223, 228, and 217 residues long, respectively, and are encoded by three genes. DNA probes for mouse C1q A, B, and C chains were hybridized to Southern blots of DNA obtained from various inbred mouse strains. On the basis of fragment length polymorphisms, two different alleles of each of the genes could be identified. The distribution of these alleles was determined in the BXD and LXPL recombinant inbred strain series. Comparison with previously reported strain distribution patterns shows that the genes encoding mouseClq map to the same locus on distal chromosome 4. Overlapping clones spanning the entire gene cluster ofClq were isolated from genomic libraries using specific cDNA probes. The three genesClqA, ClqB, andClqC are closely arranged on a 19 kilobase stretch of DNA in the 5 to 3 orientation A-C-B. Each gene consists of two exons separated by one intron. Sequence comparison of Clq from three different species have shown that the B chains have the strongest similarity. Southern blot analysis of chromosomal DNA from 14 vertebrate species demonstrated highest similarity between theClqB genes, followed byClqC and finallyClqA.The nucleotide sequence data reported in this paper have been submitted to the EMBL, GenBank, and DDBJ nucleotide sequence databases and have been assigned the accession numbers X92958 (ClqA), X92959 (ClqB), and X92960 (ClqC)  相似文献   

10.
11.
Ren M  Guo Q  Guo L  Lenz M  Qian F  Koenen RR  Xu H  Schilling AB  Weber C  Ye RD  Dinner AR  Tang WJ 《The EMBO journal》2010,29(23):3952-3966
Macrophage inflammatory protein-1 (MIP-1), MIP-1α (CCL3) and MIP-1β (CCL4) are chemokines crucial for immune responses towards infection and inflammation. Both MIP-1α and MIP-1β form high-molecular-weight aggregates. Our crystal structures reveal that MIP-1 aggregation is a polymerization process and human MIP-1α and MIP-1β form rod-shaped, double-helical polymers. Biophysical analyses and mathematical modelling show that MIP-1 reversibly forms a polydisperse distribution of rod-shaped polymers in solution. Polymerization buries receptor-binding sites of MIP-1α, thus depolymerization mutations enhance MIP-1α to arrest monocytes onto activated human endothelium. However, same depolymerization mutations render MIP-1α ineffective in mouse peritoneal cell recruitment. Mathematical modelling reveals that, for a long-range chemotaxis of MIP-1, polymerization could protect MIP-1 from proteases that selectively degrade monomeric MIP-1. Insulin-degrading enzyme (IDE) is identified as such a protease and decreased expression of IDE leads to elevated MIP-1 levels in microglial cells. Our structural and proteomic studies offer a molecular basis for selective degradation of MIP-1. The regulated MIP-1 polymerization and selective inactivation of MIP-1 monomers by IDE could aid in controlling the MIP-1 chemotactic gradient for immune surveillance.  相似文献   

12.
The majority, and perhaps all, of the genes for human U1 small nuclear RNA (U1 RNA) were shown to be located on the short arm of human chromosome 1. These genes were mapped by Southern blot analysis of DNA from rodent-human somatic cell hybrids, using the 5' region of a human U1 RNA gene as a human-specific probe. This probe hybridized to DNA fragments present only in digests of total human DNA or to the DNAs of cell lines which contained human chromosome 1. The major families of human U1 RNA genes were identified, but some human genes may have gone undetected. Also, the presence of a few U1 RNA genes on human chromosome 19 could not be ruled out. In spite of the lack of extensive 5'-flanking-region homology between the human and mouse U1 RNA genes, the genes of both species were efficiently transcribed in the hybrid cells, and the U1 RNAs of both species were incorporated into specific ribonucleoprotein particles.  相似文献   

13.
14.
The h-PRL-1 gene codes for a new phosphotyrosine phosphatase that may play an important role in the control of basic cellular processes such as cell growth and proliferation. Using the cDNA of the h-PRL-1 gene as a probe, we examined a somatic mouse and hamster × human hybrid panel and found that chromosomes 1, 17 and 11 harbor sequences homologous to h-PRL-1. By in situ hybridization of metaphase spreads, subchromosomal localizations were determined at bands 1p35–p34, 17q12– q21 and 11q24–q25; in addition, a faint signal was detected at 12q24. The chromosomal assignment of the genes homologous to h-PRL-1 will help the investigation of its possible involvement in human diseases involving genetic alteration at these chromosomal regions. Received: 12 June 1996 / Revised: 27 July 1996  相似文献   

15.
Psoriasis is a common inflammatory skin disease caused by genetic and environmental factors, including bacterial and viral infections. Since the skin is in constant contact with commensal and pathogenic microorganisms, we examined well-supported psoriasis genetic linkage intervals to identify genes encoding innate immune pattern recognition proteins that may play a role in pathogenesis. Two peptidoglycan recognition proteins, Pglyrp3 and Pglyrp4, are localized to the Psors4 locus on chromosome 1q21 in a gene cluster known as the epidermal differentiation complex (EDC). We show that these genes are expressed in the skin as well as in germinal centers in the tonsil. We tested 13 SNPs in or near these genes for association with psoriasis in two independent patient collections: a family-based patient set comprised of 375 individuals from 101 families, and a case–control patient collection of 282 patients with moderate to severe psoriasis and 192 healthy controls. In the family-based analysis, several SNPs in the Pglyrp3–Pglyrp4 locus show association with psoriasis (0.01<P<0.05). Multiple-SNP haplotypes incorporating Pglyrp3 and Pglyrp4 SNPs also show significant association in the transmission disequilibrium test (TDT; P<0.01). In the case–control test, none of the SNPs that we tested show association with psoriasis when analyzed in single-SNP or haplotype-based tests. The discordance between the TDT and case–control results suggests that the two populations are significantly different in disease etiology, that the polymorphism responsible for the Psors4 linkage is elsewhere in the Pglyrp locus, or that the causative Psors4 polymorphism is in a location near but not in the Pglyrp locus. These data are consistent with previous reports of association of psoriasis with genes on 1q21, and suggest a role for Pglyrps in skin biology. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
Differential responses in host-nematode pathotype interactions occur in wheat lines carrying different cereal cyst nematode resistance (Cre) genes. Cre1, located on chromosome 2B, confers resistance to most European nematodes and the sole Australian pathotype, while Cre3, present on chromosome 2D, is highly resistant to the Australian pathotype and susceptible to a number of European pathotypes. Genes encoding nucleotide binding site-leucine rich repeat (NBS-LRR) proteins that cosegregate with the Cre3 locus cross hybridize to homologues whose restriction fragment length polymorphism (RFLP) patterns distinguish near-isogenic Cre1 nematode-resistant wheat lines. Genetic mapping showed that the NBS-LRR gene members that distinguished the Cre1 near-isogenic lines were located on chromosome 2BL at a locus, designated Xcsl107, that cosegregates with the Cre1 locus. A haplotype of NBS-LRR genes from the Xcsl107 locus provides a diagnostic marker for the presence of Cre1 nematode resistance in a wide collection of wheat lines and segregating families. Genetic analysis of NBS-LRR haplotypes that cosegregate with Cre1 and Cre3 resistance, together with flanking cDNA markers and other markers from homoeologous group 2 chromosomes, revealed a conserved gene order that suggests Cre1 and Cre3 are homeoloci.  相似文献   

17.
18.
IFI-56K and IFI-54K are two human genes that are strongly induced by interferon and viruses. These genes are closely related at the protein, RNA, and promoter levels. By means of the somatic cell hybrid technique, the two genes have been previously located on chromosome 10. Using in situ hybridization, we show here that both IFI-54K and IFI-56K genes map to 10q23-q24. This result does not confirm the previous localization of the IFI-56K gene at the junction of the 10q25 and 10q26 bands.  相似文献   

19.
Several genome-wide association and candidate gene studies have linked chromosome 15q24-q25.1 (a region including the CHRNA5-CHRNA3-CHRNB4 gene cluster) with alcohol dependence, nicotine dependence and smoking-related illnesses such as lung cancer and chronic obstructive pulmonary disease. To further examine the impact of these genes on the development of substance use disorders, we tested whether variants within and flanking the CHRNA5-CHRNA3-CHRNB4 gene cluster affect the transition to daily smoking (individuals who smoked cigarettes 4 or more days per week) in a cross sectional sample of adolescents and young adults from the COGA (Collaborative Study of the Genetics of Alcoholism) families. Subjects were recruited from families affected with alcoholism (either as a first or second degree relative) and the comparison families. Participants completed the SSAGA interview, a comprehensive assessment of alcohol and other substance use and related behaviors. Using the Quantitative trait disequilibrium test (QTDT) significant association was detected between age at onset of daily smoking and variants located upstream of CHRNB4. Multivariate analysis using a Cox proportional hazards model further revealed that these variants significantly predict the age at onset of habitual smoking among daily smokers. These variants were not in high linkage disequilibrium (0.28相似文献   

20.
The gene for the human mineralocorticoid receptor (MLR) was previously localized to chromosome 4. Here, we have localized this gene to 4q31.2 by in situ hybridization. This precise mapping of MLR will assist in the linkage analysis and genetic characterization of pseudohypoaldosteronism, an autosomal recessive disorder which likely results from a defect in the MLR gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号