首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our previous paper (Kimura, Y., et al., Biosci. Biotechnol. Biochem., 67, 1852-1856, 2003), we found that a complex type N-glycans containing beta1-3 galactose residue occurs on royal jelly glycoproteins. During structural analysis of minor components of royal jelly N-glycans, we found complex type N-glycans bearing both galactose and N-acetylgalactosamine residues. Detailed structural analysis of pyridylaminated oligosaccharide revealed that the newly found N-glycan had a complex type structure harboring a tumor marker (T-antigen) unit: Galbeta1-3GalNAcbeta1-4GlcNAcbeta1-2Manalpha1-6 (Galbeta1-3GalNAcbeta1-4GlcNAcbeta1-2Manalpha1-3) Manbeta1-4GlcNAcbeta1-4GlcNAc. To our knowledge, this may be the first report of the presence of the T-antigen unit in the N-glycan moiety of eucaryotic glycoproteins.  相似文献   

2.
Elsewhere, we characterized the structure of twelve N-glycans purified from royal jelly glycoproteins (Kimura, Y. et al., Biosci. Biotechnol. Biochem., 64, 2109-2120 (2000)). Structural analysis showed that the typical high-mannose type structure (Man9-4GlcNAc2) accounts for about 72% of total N-glycans, a biantennary-type structure (GlcNAc2Man3GlcNAc2) about 8%, and a hybrid-type structure (GlcNAc1Man4GlcNAc2) about 3%. During structural analysis of minor N-glycans of royal jelly glycoproteins, we found that one had an N-acetyl-galactosaminyl residue at the non reducing end; most of such residues have been found in N-glycans of mammalian glycoproteins. By exoglycosidase digestion, methylation analysis, ion-spray (IS)-MS analysis, and 1H NMR spectroscopy, we identified the structure of the N-glycan containing GalNAc as; GlcNAc(beta)1-2Man(alpha)1-6(GalNAcbeta1 - 4GIcNAcbeta1 - 2Man(alpha)1 - 3)Manbeta1 - 4GlcNAc(beta)1-4GlcNAc. This result suggested that a beta1-4 GalNAc transferase is present in hypopharyngeal and mandibular glands of honeybees.  相似文献   

3.
While doing a structural analysis of minor component N-glycans linked to 350-kDa royal jelly glycoprotein (RJGP), which stimulates the proliferation of human monocytes, we found that a Galbeta1-3GlcNAcbeta1-4Man unit occurs on the insect glycoprotein. The structure of the fluorescence-labeled N-glycan was analyzed by sugar component analysis, IS-MS, and (1)H-NMR. The structural analysis showed that the 350-kDa RJGP bears Galbeta1-3GlcNAcbeta1-4(GlcNAcbeta1-2)Manalpha1-3 (Manalpha1-3Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, suggesting this insect glycoprotein is one of the substrates for both beta1-3 galactosyl and beta1-4 N-acetylglucosamininyl transferases. To our knowledge, this is the first report that succeeded in identifying an insect glycoprotein bearing the beta1-3 galactosylated N-glycan.  相似文献   

4.
In a previous study (Y. Kimura et al., Biosci. Biotechnol. Biochem., 70, 2583-2587, 2006), we found that new complex type N-glycans harboring Thomsen-Friedenreich antigen (Galbeta1-3GalNAc) unit occur on royal jelly glycoproteins, suggesting the involvement of a new beta1-3galactosyltransferase in the synthesis of the unusual complex type N-glycans. So far, such beta1-3galactosyltransferase activity, which can transfer galactosyl residues with the beta1-3 linkage to beta1-4 GalNAc residues in N-glycan, has not been found among any eucaryotic cells. But using GalNAc(2)GlcNAc(2)Man(3)GlcNAc(2)-PA as acceptor N-glycan, we detected the beta1-3 galactosyltransferase activity in membrane fraction prepared from honeybee cephalic portions. This result indicates that honeybee expresses a unique beta1-3 galactosyltransferase involved in biosynthesis of the unusual N-glycan containing a tumor related antigen in the hypopharyngeal gland.  相似文献   

5.
To determine the glycoforms of squid rhodopsin, N-glycans were released by glycoamidase A digestion, reductively aminated with 2-aminopyridine, and then subjected to 2D HPLC analysis [Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y. & Tomiya, N. (1995) Anal. Biochem.226, 139-146]. The major glycans of squid rhodopsin were shown to possess the alpha1-3 and alpha1-6 difucosylated innermost GlcNAc residue found in glycoproteins produced by insects and helminths. By combined use of 2D HPLC, electrospray ionization-mass spectrometry and permethylation and gas chromatography-electron ionization mass spectrometry analyses, it was revealed that most (85%) of the N-glycans exhibit the novel structure Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAcbeta1-4(Galbeta1-4Fucalpha1-6)(Fucalpha1-3)GlcNAc.  相似文献   

6.
A processing The processing pathway of N-glycans in Carica papaya was deduced from the structures of N-glycans. The N-glycans were liberated by hydrazinolysis followed by N-acetylation. Their reducing-end sugar residues were tagged with 2-aminopyridine and the pyridylamino (PA-) sugar chains thus obtained were purified by HPLC. Eleven PA-sugar chains were found, and their structures were analyzed by two-dimensional sugar mapping combined with partial acid hydrolysis and exoglycosidase digestion. The structures of the N-glycans were of the highmannose types with xylose and fucose; however, among them two new N-glycans, Manalpha1-6(Manalpha1-3)Manalpha1-6(Xylbeta1-2)+ ++Manbeta1-4GlcNAcbeta1- 4(Fucalpha1-3)GlcNAc and Manalpha1-3Manalpha1-6(Xylbeta1-2)Manbeta1-4G lcNAcbeta1-4(Fucalpha1-3 )GlcNAc, were found. Judging from these structures together with Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) (Xylbeta1-2)Manbeta1- 4GlcNAcbeta1-4(Fucalpha1-3)GlcNAc reported previously [Shimazaki, A., Makino, Y., Omichi, K., Odani, S., and Hase, S. (1999) J. Biochem. 125, 560- 565], a processing pathway for N-glycans in C. papaya is inferred in which the activity of Golgi alpha-mannosidase II is incomplete.  相似文献   

7.
Urine of a fucosidosis patient contained a large amount of fucosyl oligosaccharides and fucose-rich glycopeptides. Six major oligosaccharides were purified by a combination of Bio-Gel P-2 and P-4 column chromatographies and paper chromatography. Structural studies by sequential exoglycosidase digestion and by methylation analysis revealed that their structures were as follows: Fucalpha1 leads to 6GlcNAc, Fucalpha1 leads to 2Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 2Manalpha1 leads to 3Manbeta1 leads to 4GlcNAc, Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 4Manalpha1 leads to 4GlcNAc, Galbeta1 leads to 4(Fucalpha1 leads to3)GlcNAcbeta1 leads to 2Manalpha1 leads to 6Manbeta1 leads to 4GlcNAc, and Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 4Manalpha1 leads to 6Manalpha1 leads to 6Manbeta1 leads to 4GlcNAc. In additon, the structure of a minor decasaccharide was found to be Galbeta1 leads to (Fucalpha1 leads to)GlcNAcbeta1 leads to Manalpha1 leads to [Galbeta1 leads to (Fucalpha1 leads to)GlcNAcbeta1 leads to Manalpha1 leads to]Manbeta1 leads to 4GlcNAc.  相似文献   

8.
The trypanosomatids are generally aberrant in their protein N-glycosylation pathways. However, protein N-glycosylation in the African trypanosome Trypanosoma brucei, etiological agent of human African sleeping sickness, is not well understood. Here, we describe the creation of a bloodstream-form T. brucei mutant that is deficient in the endoplasmic reticulum enzyme glucosidase II. Characterization of the variant surface glycoprotein, the main glycoprotein synthesized by the parasite with two N-glycosylation sites, revealed unexpected changes in the N-glycosylation of this molecule. Structural characterization by mass spectrometry, nuclear magnetic resonance spectroscopy, and chemical and enzymatic treatments revealed that one of the two glycosylation sites was occupied by conventional oligomannose structures, whereas the other accumulated unusual structures in the form of Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, and Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc. The possibility that these structures might arise from Glc1Man9GlcNAc2 by unusually rapid alpha-mannosidase processing was ruled out using a mixture of alpha-mannosidase inhibitors. The results suggest that bloodstream-form T. brucei can transfer both Man9GlcNAc2 and Man5GlcNAc2 to the variant surface glycoprotein in a site-specific manner and that, unlike organisms that transfer exclusively Glc3Man9GlcNAc2, the T. brucei UDP-Glc: glycoprotein glucosyltransferase and glucosidase II enzymes can use Man5GlcNAc2 and Glc1Man5GlcNAc2, respectively, as their substrates. The ability to transfer Man5GlcNAc2 structures to N-glycosylation sites destined to become Man(4-3)GlcNAc2 or complex structures may have evolved as a mechanism to conserve dolichol-phosphate-mannose donors for glycosylphosphatidylinositol anchor biosynthesis and points to fundamental differences in the specificities of host and parasite glycosyltransferases that initiate the synthesis of complex N-glycans.  相似文献   

9.
As a part of our studies to elucidate the physiological significance of free N-glycans in differentiating or growing plant cells, we first demonstrate that two kinds of free N-glycans already occur at an early stage of seed development. In this report, we used the developing Ginkgo biloba seeds as a model plant, since we have already revealed a functional feature of the Ginkgo endo-beta-N-acetylglucosaminidase and structural features of N-glycans linked to storage glycoproteins in the developing seeds [Kimura, Y. et al. (1998) Biosci. Biotechnol. Biochem. 62, 253-261; Kimura, Y. and Matsuo, S. (2000) Biosci. Biotechnol. Biochem. 64, 562-568]. The structures of free N-glycans, which were determined by a combination of ESI-MS, sequential a-mannosidase digestions, partial acetolysis, and two dimensional sugar chain map, fell into two categories. One dominant species is a high-mannose type structure having one GlcNAc residue at the reducing end (Man(9-5)GlcNAc(1)). The concentration of this type of free glycan (as the pyridylaminated derivatives) is about 2.2 nmol in 1 g fresh weight. The detailed structural analysis revealed that the high-mannose type structures have a common core unit; Manalpha1-6(Man1-3)Manalpha1-6(Manalpha1-3)Ma nbeta1-4GlcNAc. The other minor species of free N-glycans is the plant complex type structure having an N-acetylchitobiose unit at the reducing end (Man(3)Xyl(1)Fuc(1)GlcNAc(2)). The concentration of this type of free glycan (as the pyridylaminated derivative) was about 75 pmol in 1 g fresh weight.  相似文献   

10.
In our previous study (Y. Kimura et al., Biosci. Biotechnol. Biochem., 69, 137-144 (2005)), we found that plant complex type N-glycans harboring Lewis a epitope are linked to the mountain cedar pollen allergen Jun a 1. Jun a 1 is a glycoprotein highly homologous with Japanese cedar pollen glycoallergen, Cry j 1. Although it has been found that some plant complex type N-glycans are linked to Cry j 1, the occurrence of Lewis a epitope in the N-glycan moiety has not been proved yet. Hence, we reinvestigated the glycoform of the pollen allergen to find whether the Lewis a epitope(s) occur in the N-glycan moiety of Cry j 1. From the cedar pollen glycoallergen, the N-glycans were liberated by hydrazinolysis and the resulting sugar chains were N-acetylated and then coupled with 2-aminopyridine. Three pyridylaminated sugar chains were purified by reversed-phase HPLC and size-fractionation HPLC. The structures were analyzed by a combination of exo- and endo-glycosidase digestions, sugar chain mapping, and electrospray ionization mass spectrometry (ESI-MS). Structural analysis clearly indicated that Lewis a epitope (Galbeta1-3(Fucalpha1-4)GlcNAcbeta1-), instead of the Galbeta1-4(Fucalpha1-6)GlcNAc, occurs in the N-glycans of Cry j 1.  相似文献   

11.
Poly-N-acetyllactosamine is a unique carbohydrate that can carry various functional oligosaccharides, such as sialyl Lewis X. It has been shown that the amount of poly-N-acetyllactosamine is increased in N-glycans, when they contain Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->4GlcNAcbeta1 -->2)Manalpha1-->6 branched structure. To determine how this increased synthesis of poly-N-acetyllactosamines takes place, the branched acceptor was incubated with a mixture of i-extension enzyme (iGnT) and beta1, 4galactosyltransferase I (beta4Gal-TI). First, N-acetyllactosamine repeats were more readily added to the branched acceptor than the summation of poly-N-acetyllactosamines formed individually on each unbranched acceptor. Surprisingly, poly-N-acetyllactosamine was more efficiently formed on Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chain than in Galbeta1-->4GlcNAcbeta1-->6Manalpha-->R, due to preferential action of iGnT on Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chain. On the other hand, galactosylation was much more efficient on beta1,6-linked GlcNAc than beta1,2-linked GlcNAc, preferentially forming Galbeta1-->4GlcNAcbeta1-->6(GlcNAcbeta1-->2)Manalph a1-->6Manbeta -->R. Starting with this preformed acceptor, N-acetyllactosamine repeats were added almost equally to Galbeta1-->4GlcNAcbeta1-->6Manalpha-->R and Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chains. Taken together, these results indicate that the complemental branch specificity of iGnT and beta4Gal-TI leads to efficient and equal addition of N-acetyllactosamine repeats on both side chains of GlcNAcbeta1-->6(GlcNAcbeta1-->2)Manalpha1-->6Manbet a-->R structure, which is consistent with the structures found in nature. The results also suggest that the addition of Galbeta1-->4GlcNAcbeta1-->6 side chain on Galbeta1-->4GlcNAcbeta1-->2Man-->R side chain converts the acceptor to one that is much more favorable for iGnT and beta4Gal-TI.  相似文献   

12.
We have previously detected two brain-specific and development-dependent N-glycans [H. Shimizu, K. Ochiai, K. Ikenaka, K. Mikoshiba, and S. Hase (1993) J. Biochem. 114, 334-338]. In the present study we attempted to analyze specific N-glycans detected in neurological mutant mice. N-glycans in cerebrum and cerebellum obtained from 3-week-old neurological mutant mice (jimpy, staggerer, and shiverer) were compared with those obtained from normal mice. N-glycans liberated from the cerebrum and cerebellum by hydrazinolysis-N-acetylation were pyridylaminated, and pyridylamino derivatives of N-glycans thus obtained were separated into neutral and five acidic fractions by anion exchange chromatography. PA-N-glycans in each fraction were compared with those obtained from normal mice by reversed-phase HPLC, and the following results were obtained. The ratio of the two brain-type N-glycans, Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc (BA-1) to GlcNAcbetaManalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fuca1-6)GlcNAc (BA-2), was higher in staggerer mice than other mutant mice and normal mice. Sia-Gal-BA-2, triantennary N-glycans, and bisected biantennary N-glycans were found in the cerebellum of shiverer and staggerer mice but not in normal or jimpy mice. High-mannose type N-glycans were not altered in mutant mice brains. The amounts of disialylbiantennary N-glycans and disialylfucosylbiantennary N-glycans were lower in jimpy mouse cerebellum than in normal mouse cerebellum, but were higher in shiverer mouse. Some alterations of N-glycans specific to mutations were successfully identified, suggesting that expression of component(s) of the N-glycan biosynthetic pathway was specifically affected in neurological mutations.  相似文献   

13.
We previously reported two brain-specific agalactobiantennary N-linked sugar chains with bisecting GlcNAc and alpha1-6Fuc residues, (GlcNAcbeta1-2)(0)(or)(1)Manalpha1-3(GlcNAcbeta1-2M analpha1-6)(GlcNA cbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)Glc NAc [Shimizu, H., Ochiai, K., Ikenaka, K., Mikoshiba, K., and Hase, S. (1993) J. Biochem. 114, 334-338]. Here, the reason for the absence of Gal on the sugar chains was analyzed through the detection of other complex type sugar chains. Analysis of N-linked sugar chains revealed the absence of Sia-Gal and Gal on the GlcNAc residues of brain-specific agalactobiantennary N-linked sugar chains. We therefore investigated the substrate specificity of galactosyltransferase activities in brain using pyridylamino derivatives of agalactobiantennary sugar chains with structural variations in the bisecting GlcNAc and alpha1-6Fuc residues as acceptor substrates. While the beta1-4galactosyltransferases in liver and kidney could utilize all four oligosaccharides as substrates, the beta1-4galactosyltransferase(s) in brain could not utilize the agalactobiantennary sugar chain with both bisecting GlcNAc and Fuc residues, but could utilize the other three acceptors. Similar results were obtained using glycopeptides with agalactobiantennary sugar chains and bisecting GlcNAc and alpha1-6Fuc residues as substrates. The beta1-4galactosyltransferase activity of adult mouse brain thus appears to be responsible for producing the brain-specific sugar chains and to be different from beta1-4galactosyltransferase-I. The agalactobiantennary sugar chain with bisecting GlcNAc and alpha1-6Fuc residues acts as an inhibitor against "brain type" beta1-4galactosyltransferase with a K(i) value of 0.29 mM.  相似文献   

14.
The flagellar pocket of the bloodstream form of the African sleeping sickness parasite Trypanosoma brucei contains material that binds the beta-d-galactose-specific lectin ricin (Brickman, M. J., and Balber, A. E. (1990) J. Protozool. 37, 219-224). Glycoproteins were solubilized from bloodstream form T. brucei cells in 8 M urea and 3% SDS and purified by ricin affinity chromatography. Essentially all binding of ricin to these glycoproteins was abrogated by treatment with peptide N-glycosidase, showing that the ricin ligands are attached to glycoproteins via N-glycosidic linkages to asparagine residues. Glycans released by peptide N-glycosidase were resolved by Bio-Gel P-4 gel filtration into two fractions: a low molecular mass mannose-rich fraction and a high molecular mass galactose and N-acetylglucosamine-rich fraction. The latter fraction was further separated by high pH anion exchange chromatography and analyzed by gas chromatography mass spectrometry, one- and two-dimensional NMR, electrospray mass spectrometry, and methylation linkage analysis. The high molecular mass ricin-binding N-glycans are based on a conventional Manalpha1-3(Manalpha1-6)Manbeta1-4-GlcNAcbeta1-4GlcNAc core structure and contain poly-N-acetyllactosamine chains. A significant proportion of these structures are extremely large and of unusual structure. They contain an average of 54 N-acetyllactosamine (Galbeta1-4GlcNAc) repeats per glycan, linked mostly by -4GlcNAcbeta1-6Galbeta1-interrepeat linkages, with an average of one -4GlcNAcbeta1-3(-4GlcNAcbeta1-6)Galbeta1- branch point in every six repeats. These structures, which also bind tomato lectin, are twice the size reported for the largest mammalian poly-N-acetyllactosamine N-linked glycans and also differ in their preponderance of -4GlcNAcbeta1-6Galbeta1- over -4GlcNacbeta1-3Galbeta1- interrepeat linkages. Molecular modeling suggests that -4GlcNAcbeta1-6Galbeta1- interrepeat linkages produce relatively compact structures that may give these giant N-linked glycans unique physicochemical properties. Fluorescence microscopy using fluorescein isothiocyanatericin indicates that ricin ligands are located mainly in the flagellar pocket and in the endosomal/lysosomal system of the trypanosome.  相似文献   

15.
Endo-beta-mannosidase, which hydrolyzes the Manbeta1-4GlcNAc linkage in the trimannosyl core structure of N-glycans, was recently purified to homogeneity from lily (Lilium longiflorum) flowers as a heterotrimer [Ishimizu, T., Sasaki, A., Okutani, S., Maeda, M., Yamagishi, M., and Hase, S. (2004) J. Biol. Chem. 279, 38555-38562]. Here, we describe the substrate specificity of the enzyme and cloning of its cDNA. The purified enzyme hydrolyzed pyridylaminated (PA-) Man(n)Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc (n = 0-2) to Man(n)Manalpha1-6Man and GlcNAcbeta1-4GlcNAc-PA. It did not hydrolyze PA-sugar chains containing Manalpha1-3Manbeta and/or Xylbeta1-2Manbeta. The best substrate among the PA-sugar chains tested was Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-PA with a K(m) value of 1.2 mM. However, the enzyme displayed a marked preference for the corresponding glycopeptide, Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-peptide (K(m) value 75 microM). These results indicate that the substrate recognition by the enzyme involves the peptide portion attached to the N-glycan. Sequence information on the purified enzyme was used to clone the corresponding cDNA. The monocotyledonous lily enzyme (952 amino acids) displays 68% identity to its dicotyledonous (Arabidopsis thaliana) homologue. Our results show that the heterotrimeric enzyme is encoded by a single gene that gives rise to three polypeptides following posttranslational proteolysis. The enzyme is ubiquitously expressed, suggesting that it has a general function such as processing or degrading N-glycans.  相似文献   

16.
The structures of unconjugated or free N-glycans in stems of soybean seedlings and dry seeds have been identified. The free N-glycans were extracted from the stems of seedlings or defatted dry seeds. After desalting by two kinds of ion-exchange chromatography and a gel filtration, the free N-glycans were coupled with 2-aminopyridine. The resulting fluorescence-labeled (PA-) N-glycans were purified by gel filtration, Con A affinity chromatography, reverse-phase HPLC, and size-fractionation HPLC. The structures of the PA-sugar chains purified were analyzed by the combination of two-dimensional sugar chain mapping, jack bean alpha-mannosidase digestion, alpha-1,2-mannosidase digestions, partial acetolysis, and ESI-MS/MS. The free N-glycan structures found showed that two categories of free N-glycans occur in the stems of soybean seedlings. One is a high-mannose type structure having one GlcNAc residue at the reducing end (Man 9 approximately 5 GlcNAc1, 93%), that would be derived by endo-GM (Kimura, Y. et al., Biochim. Biophys. Acta, 1381, 27-36 (1998)). The other small component is a xylose-containing type one having two GlcNAc residues at the reducing end (Man3Xyl1GlcNAc2, 7%), which would be derived by PNGase-GM (Kimura, Y. and Ohno, A., Biosci. Biotechnol. Biochem., 62, 412-418 (1998)). The detailed structural analysis of free glycans showed that high-mannose type free N-glycans (Man 9 approximately 5 GlcNAc1) in the soybean seedlings have a common core structural unit; Manalpha1-6(Man1-3)Manalpha1-6(Manalpha1-3)Ma nbeta1-4GlcNAc. Comparing the amount of free N-glycans in the seedling stems and dry seeds, the amount in the stems of seedlings was much higher than that in the dry seeds; approximately 700 pmol per one stem, 8 pmol in one dry seed. This fact suggested that free N-glycans in soybean seedlings could be produced by two kinds of N-glycan releasing enzymes during germination or seedling-development.  相似文献   

17.
The structures of N-glycans of total glycoproteins in royal jelly have been explored to clarify whether antigenic N-glycans occur in the famous health food. The structural feature of N-glycans linked to glycoproteins in royal jelly was first characterized by immunoblotting with an antiserum against plant complex type N-glycan and lectin-blotting with Con A and WGA. For the detail structural analysis of such N-glycans, the pyridylaminated (PA-) N-glycans were prepared from hydrazinolysates of total glycoproteins in royal jelly and each PA-sugar chain was purified by reverse-phase HPLC and size-fractionation HPLC. Each structure of the PA-sugar chains purified was identified by the combination of two-dimensional PA-sugar chain mapping, ESI-MS and MS/MS analyses, sequential exoglycosidase digestions, and 500 MHz 1H-NMR spectrometry. The immunoblotting and lectinblotting analyses preliminarily suggested the absence of antigenic N-glycan bearing beta1-2 xylosyl and/or alpha1-3 fucosyl residue(s) and occurrence of beta1-4GlcNAc residue in the insect glycoproteins. The detailed structural analysis of N-glycans of total royal jelly glycoproteins revealed that the antigenic N-glycans do not occur but the typical high mannose-type structure (Man(9 to approximately 4)GlcNAc2) occupies 71.6% of total N-glycan, biantennary-type structures (GlcNAc2Man3 GlcNAc2) 8.4%, and hybrid type structure (GlcNAc1 Man4GlcNAc2) 3.0%. Although the complete structures of the remaining 17% N-glycans; C4, (HexNAc3 Hex3HexNAc2: 3.0%), D2 (HexNAc2Hex5HexNAc2: 4.5%), and D3 (HexNAc3Hex4HexNAc2: 9.5%) are still obscure so far, ESI-MS analysis, exoglycosidase digestions by two kinds of beta-N-acetylglucosaminidase, and WGA blotting suggested that these N-glycans might bear a beta1-4 linkage N-acetylglucosaminyl residue.  相似文献   

18.
Endo-beta-mannosidase is a novel endoglycosidase that hydrolyzes the Manbeta1-4GlcNAc linkage in the trimannosyl core structure of N-glycans. This enzyme was partially purified and characterized in a previous report (Sasaki, A., Yamagishi, M., Mega, T., Norioka, S., Natsuka, S., and Hase, S. (1999) J. Biochem. 125, 363-367). Here we report the purification and molecular cloning of endo-beta-mannosidase. The enzyme purified from lily flowers gave a single band on native-PAGE and three bands on SDS-PAGE with molecular masses of 42, 31, and 28 kDa. Amino acid sequence information from these three polypeptides allowed the cloning of a homologous gene, AtEBM, from Arabidopsis thaliana. AtEBM was engineered for expression in Escherichia coli, and the recombinant protein comprised a single polypeptide chain with a molecular mass of 112 kDa corresponding to the sum of molecular masses of three polypeptides of the lily enzyme. The recombinant protein hydrolyzed pyridylamino derivatives (PA) of Manalpha1-6Manbeta1-4Glc-NAcbeta1-4GlcNAc into Manalpha1-6Man and GlcNAcbeta1-4Glc-NAc-PA, showing that AtEBM is an endo-beta-mannosidase. AtEBM hydrolyzed Man(n)Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-PA (n = 0-2) but not PA-sugar chains containing Manalpha1-3Manbeta or Xylosebeta1-2Manbeta as for the lily endo-beta-mannosidase. AtEBM belonged to the clan GH-A of glycosyl hydrolases. Site-directed mutagenesis experiments revealed that two glutamic acid residues (Glu-464 and Glu-549) conserved in this clan were critical for enzyme activity. The amino acid sequence of AtEBM has distinct differences from those of the bacterial, fungal, and animal exo-type beta-mannosidases. Indeed, AtEBM-like genes are only found in plants, indicating that endo-beta-mannosidase is a plant-specific enzyme. The role of this enzyme in the processing and/or degradation of N-glycan will be discussed.  相似文献   

19.
Cauxin is a carboxylesterase-like glycoprotein excreted as a major component of cat urine. Cauxin contains four putative N-glycosylation sites. We characterized the structure of an N-linked oligosaccharide of cauxin using nano liquid chromatography (LC)-electrospray ionization (ESI) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS) and MS/MS, and high-performance liquid chromatography (HPLC) with an octadecylsilica (ODS) column. The structure of the N-linked oligosaccharide of cauxin attached to (83)Asn was a bisecting complex type, Galbeta1-4GlcNAcbeta1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号