首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The ultrastructure of the digestive tract of tornaria larva of enteropneusts was investigated. It showed that the digestive tract consists of three parts: esophagus, stomach, and intestine. The esophagus epithelium consists of two types of multiciliated epithelial cells and solitary muscle cells. Axonal tracts and neurons were found in the ventral wall of the esophagus. The cardiac sphincter contains an anterior band of strongly ciliated cells and a posterior band of cells with long vacuolized processes which partition the sphincter lumen. The stomach consists of three cell types: (1) cells with electron-opaque cytoplasm, bearing a fringed border on their apical sides; (2, 3) sparse cells with electron-light cytoplasm and different patterns of apical microvilli. Cells of the pyloric sphincter bear numerous cilia and almost no microvilli. The intestine consists of three parts. The anterior part is formed of multiciliated cells which bear the fringed border. The middle part consists of flattened cells bearing rare cilia and vast numbers of mace-like microvilli. The posterior part of the intestine is formed of cells bearing numerous cilia and few microvilli. Muscle cells were not found in either stomach or intestine epithelium. One noticed that the structure of the digestive tract of enteropneust tornaria larva differs from that of echinoid pluteus larva.  相似文献   

2.
应用活体解剖和光镜技术对中华刺鳅消化系统形态与组织学特征进行了研究。结果显示:中华刺鳅属典型的无鳔管、有胃鱼类,消化道较短,约为体长的45%,整体呈“Z”字形。食道很短,后与胃相联,胃呈“V”型,胃分为贲门部、胃底部和幽门部,贲门胃自食道末端到胃的底部都具有丰富的腺组织分布,其长度也是胃部最长的,约占中华刺鳅消化管长度的23%。胃底部的肌肉发达较厚,但仅贲门部有丰富的腺组织。消化道各段在组织结构上差异显著。胃前,消化道肌肉层内环肌与外纵肌厚度之比自前向后逐渐增大,杯状细胞数量自前向后逐渐减少;胃后,肠道肌肉层内环肌与外纵肌厚度之比则逐渐减小,杯状细胞数量逐渐增多。消化腺分为肝脏和胰腺,肝脏与胰脏为独立的两个器官,胰脏分散分布于胃与肠道周围的系膜内,肉眼可见。未发现类似鲤科鱼类弥撒于肝脏或脾脏内的胰腺结构。中华刺鳅以日本沼虾和秀丽白虾为主要摄食对象,性凶猛,为典型的肉食性鱼类。  相似文献   

3.
The alimentary tract of Kowalevskia tenuis and K. oceanica, the only species of the appendicularian family Kowalevskiidae, was studied both at the light and electron microscope levels and compared with species belonging to the other two families of the class. Kowalevskids show interesting specializations: 1) the pharynx opens on both sides through two opposing spiracles, modified into long ciliated fissures, and possesses an original filtering system of ciliated combs arranged in two pairs of opposing longitudinal rows; 2) the endostyle is absent, its place being taken by a ciliated groove without any glandular cell; 3) posterior to the esophagus, the globular stomach and rectum form a digestive nucleus comprising a few, large cells including two well-developed, specialized valves, cardiac and pyloric; 4) special apical junctions bearing characteristics of both gap and adherens junctions are diffuse along the gut epithelium; 5) the heart is absent. Our data suggest that Kowalevskiidae underwent a high degree of specialization for food filtering and are more closely related to Fritillariidae, with which they share several characters, rather than Oikopleuridae, the latter probably representing the most primitive family of appendicularians.  相似文献   

4.
Enkephalins are involved in neural control of digestive functions such as motility, secretion, and absorption. To better understand their role in pigs, we analyzed the qualitative and quantitative distribution of enkephalin immunoreactivity (ENK-IR) in components of the intestinal wall from the esophagus to the anal sphincter. Immunohistochemical labelings were analyzed using conventional fluorescence and confocal microscopy. ENK-IR was compared with the synaptophysin immunoreactivity (SYN-IR). The results show that maximal ENK-IR levels in the entire digestive tract are reached in the myenteric plexuses and, to a lesser extent, in the external submucous plexus and the circular muscle layer. In the longitudinal muscle layer, ENK-IR was present in the esophagus, stomach, rectum, and anal sphincter, whereas it was absent from the duodenum to the distal colon. In the ENK-IR plexuses and muscle layers, more than 60% of the nerve fibers identified by SYN-IR expressed ENK-IR. No ENK-IR was observed in the internal submucous plexus and the mucosa; the latter was found to contain ENK-IR endocrine cells. These results strongly suggest that, in pigs, enkephalins play a major role in the regulatory mechanisms that underlie the neural control of digestive motility.  相似文献   

5.
Peroxidase activity was examined cytochemically in the mucosal epithelium along the length of the digestive tract from the esophagus through the large intestine during the development of the bullfrog, Rana catesbeiana. In the tadpole of this species, cells with peroxidase activity were found abundantly in the esophagus, stomach, and large intestine; and the types of such cells differed according to the region: ciliated cells and mucous cells in the esophagus; ciliated cells in the stomach; and brush cells, absorptive cells, and goblet cells in the large intestine, respectively. After metamorphosis, however, peroxidase activity was observed exclusively in absorptive cells and goblet cells in the large intestine. Peroxidase activity was commonly demonstrated in apical vesicles or granules, to some degree in rough endoplasmic reticulum, and in some elements of the Golgi apparatus. Furthermore, reaction product was also found in mucus covering the luminal surface of such epithelial cells. These findings indicate that peroxidase-positive cells, which may have the ability to synthesize peroxidase as a secretory product, were distributed mainly in three regions of the digestive tract in tadpoles (esophagus, stomach, and large intestine), but were centered in one specific region, the large intestine, after metamorphosis. Concomitantly, the variety of types of peroxidase-positive cells decreased during metamorphosis. Our results indicate that some of the peroxidase in the digestive tract may have a secretory origin and may play a role in the defense against microorganisms.  相似文献   

6.
脉红螺消化系统的形态学研究   总被引:16,自引:2,他引:16  
侯林  程济民 《动物学报》1991,37(1):7-15
脉红螺消化系统由十二个器官组成。其消化管壁都由粘膜层、粘膜下层、肌层和外膜四层结构构成。作者对消化腺的细胞进行了较详细的描述,并利用组化方法测定消化腺细胞中含有的酶类。作者还对部分器官的超微结构进行了观察。  相似文献   

7.
The digestive tract of the freshwater amphipod Hyalella azteca is a straight but differentiated tube consisting of foregut, midgut, and hindgut divisions. The foregut is subdivided into a tubular esophagus, a cardiac stomach, and a pyloric stomach. The cuticular lining of the cardiac stomach is elaborated into a set of food-crushing plates and ossicles, the gastric mill, while the pyloric cuticle forms a complex straining and pressing mechanism. Nine caeca arise from the midgut, seven anteriorly and two posteriorly. Four of the anterior caeca, the hepatopancreatic caeca, are believed to be the primary sites of digestion and absorption. The remaining caeca may be absorptive, secretory, or both. The much-folded hindgut wall is capable of great distention by extrinsic muscle action for water intake to aid in flushing fecal material out of the anus; such action also may stimulate antiperistalsis by intrinsic rectal muscles.  相似文献   

8.
应用光学显微镜观察龟足(Capitulum mitella)消化系统的形态和组织结构。龟足的消化系统包括消化腺和消化道。消化腺一对,呈长囊状,含有分泌细胞(B细胞)、吸收细胞(R细胞)、储存细胞(F细胞)和胚细胞(E细胞)4种类型细胞。消化道呈U型,由口、食道、胃、肠、直肠和肛门组成,各部分的结构由内到外可分为黏膜层、黏膜下层、肌层和外膜4层。口器为咀嚼型,包括一片上唇、一对触须、一对大颚以及两对小颚。食道细短,具几丁质层但无基膜,管壁向腔内突起形成明显的纵褶突;食道前段的环肌特别发达,同时独有放射肌。胃略呈球袋状,肠较长;胃和肠的组织结构相似,没有几丁质层,上皮细胞都有发达的微绒毛。直肠细长,外膜分布有16组纵肌;直肠前段的组织结构与胃、肠相似,而直肠后段有几丁质层覆盖,黏膜层、黏膜下层、肌层和外膜渐退化,16组纵肌渐发达。肛门16组更加发达的纵肌挤入上皮细胞下方,在外膜外另出现一层明显的环肌。龟足消化道各部分的组织结构差异明显,反映了它们功能的差异。  相似文献   

9.
Digestive tract motor correlates of vomiting and nausea   总被引:1,自引:0,他引:1  
The digestive tract from the upper esophageal sphincter to the ileum participates in the vomiting process, but the role of the digestive tract in nausea is unclear. In preparation for vomiting, the proximal stomach relaxes and the small intestine is evacuated orad in a single mass movement by a retrograde giant contraction and caudad in a stripping fashion by a series of phasic contractions. Orad evacuation of the small intestine may not only remove offending substances but may also dilute. or buffer gastric contents with intestinal and pancreaticobiliary secretions. In association with retching and vomiting, the striated muscle of the esophagus contracts longitudinally, pulling the relaxed proximal stomach into the thoracic cavity forming a funnel from stomach to esophagus. However, gastric evacuation does not occur until the hiatal fibers of the diaphragm relax during vomitus expulsion. Nausea is a subjective feeling in humans that is difficult to identify in animals. Various changes in digestive tract activity have been associated with nausea, but no evidence suggests that these events cause nausea. The prodromal signs of vomiting (e.g., increased heart rate and respiration) that occur concomitantly with the gastrointestinal motor correlates of vomiting have been considered autonomic indices of nausea in animals, but this has not been proven. Regardless, the gastrointestinal motor correlates of vomiting do not cause the prodromata. The emetic central pattern generator may be organized in parallel with respect to its individual autonomic correlates, but as groups of responses, the autonomic and somatomotor correlates may be organized in series.  相似文献   

10.
11.
The U-shaped alimentary tract of Cephalodiscus is of exclusively epithelial structure; on the basis of fine structural criteria the entire tract can be divided into two large subdivisions: an anterior one with mouth, mouth cavity, pharynx and oesophagus, and a posterior one with stomach and intestine. The anterior subdivision is built up of a relatively uniform, innervated, pseudostratified, ciliated epithelium with mucus cells which are concentrated in the initial parts of the mouth cavity. Cilia and mucus presumably constitute a mechanism transporting food particles into the stomach. In the area of the gill slits specific vacuolated cells occur which may lend rigidity to the walls of the slits. The gastric epithelium consists of prismatic cells characterized by, among others, large inclusion bodies, which may represent digestive vacuoles, small dense rod-shaped granules and an elaborate system of microridges, at the base of which abundant endocytotic vesicles occur. The dorsal gastric pouch contains cells rich in rough ER and secretory granules, probably containing digestive enzymes. Thus morphological evidence points both to intra- and extracellular digestion. The intestinal epithelium resembles that of the stomach, however, it is lower, its organelles are fewer and it bears, beside cilia, mainly microridges, which towards its distal end become sparse. Both in the gastric and intestinal epithelium small granulated cells have been found, which presumably represent endocrine cells.  相似文献   

12.
The gross morphology and histology of the alimentary tracts of three species of glassy perchlet; Ambassis productus, A. natalensis, and A. gymnocephalus from estuaries on the southeast coast of Africa were investigated. The anatomy of the digestive tracts in all three species was found to be similar. Well-developed dentition and pharyngeal teeth together with a distensible stomach and a low relative gut length (RGL) suggest a predatory and carnivorous habit for all three species. The relative gut lengths of Ambassis species from different estuarine systems are compared‥ Differences in RGL for A. productus and A. natalensis from the Kosi and St Lucia systems with fish from Mdloti estuary are discussed. It is suggested that decreased RGL for fish at Mdloti is attributable to decreased food availability and not to a lack in the calorific content of their diet. Histological investigation revealed the presence of the following regions: a pharynx; an oesophagus; a stomach differentiated into cardiac and pyloric regions; a duodenum or upper intestine; an ileum or lower intestine; and a rectum. Pyloric and rectal sphincters are present. The tunics of the above regions are described. The epithelium of the oesophagus contains taste buds and numerous mucus cells, and varies from stratified anteriorly to simple columnar posteriorly. The muscularis comprises dorsally and ventrally located inner muscle bundles and an outer circular layer. Both layers consist of striated fibres. Gastric glands are present in the mucosa of the cardiac stomach but are absent in the pylorus. Columnar absorbing cells and goblet cells are present in the epithelium of the upper and lower intestine. The rectum is distinguished from the intestine by the proliferation of mucous-secreting cells which are thought to aid defecation.  相似文献   

13.
Myzostoma cirriferum feeds by diverting food particles carried by the ambulacral grooves of its comatulid host Antedon bifida. When searching for food, the myzostome uses its protrusible introvert to fulfil two major functions: sensory perception and the capture of food particles. The digestive system is composed of four parts, viz. a pharynx, that is contained within the introvert, a stomach, a series of paired caeca and an intestine that lie in the myzostome's trunk. The pharynx is supplied with a thick muscle which, thanks to peristaltic movements, carries food particles from the mouth to the stomach. Both stomach and caecal cells are able to absorb dissolved nutriments and to store lipids, whereas intestinal cells are only capable of absorption. Due to the beating of their cilia, stomach cells also carry food particles into the caecal lumen, where they are subjected to endocytosis and intracellular digestion by caecal cells. Undigested food fragments eventually gather in a very large, apical vacuole, and the cell apices containing vacuoles are eliminated into the caecal lumen by an apocrinal process. Detached cell apices reach the stomach, where they are embedded in a matrix, together forming a spindle-shaped faecal mass that is expelled through the postero-ventral anus. The observed digestive process—entailing the regular elimination of the apical part of the caecal digestive cells—appears to be unique among the Spiralia.  相似文献   

14.
In acute experiments on cats and in chronic experiments on dogs the contractile activity of the esophagus and the cardiac sphincter was recorded with a ballon pulled from the stomach to the esophagus connected to a catheter. The intravenous injection of Metoclopramide in doses of 0.5--0.6 mg/kg to cats and subcutaneous injection of Metoclopramide in doses of 0.1--0.15 mg/kg to dogs elevated the pressure in the cardiac sphincter significantly increased the motility of the distal esophagus and stimulated the esophago-gastric inhibitory reflex. These effects persisted for 2.5--3 hrs; they were phasic in nature and were preserved after vagotomy in dogs. A conclusion was drawn that Metoclopramide could be useful in pathology of the distal esophagus, including the cardiac sphincter.  相似文献   

15.
应用石蜡常规切片、HE染色,对马铁菊头蝠消化系统各器官的组织结构进行了观察.结果 表明:食管粘膜上皮为复层扁平上皮,轻微角质化,前、中、后段的上皮结构没有显著差异,食管腺在前段较多,中、后段较少.胃固有层含有大量的管状腺.小肠粘膜表面有许多环形皱襞,在十二指肠上段粘膜下层分布有十二指肠腺.大肠粘膜表面光滑,无绒毛,在粘膜下层的结缔组织中有小动脉、静脉和淋巴管.肝内结缔组织多,肝小叶分界较明显,肝血窦发达.胰的小叶间分界不明显.  相似文献   

16.
Suíçmez M  Ulus E 《Folia biologica》2005,53(1-2):95-100
The anatomy, histology and ultrastructure of the digestive tract of Orthrias angorae (Steindachner, 1897) were investigated using light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The histological structure consists of four layers: mucosa, submucosa, muscularis and serosa. The esophageal mucosa consists of undifferentiated basal epithelial cells, mucous cells and surface epithelial cells. It was observed that the J-shaped stomach had a meshwork of folds in the cardiac region, and longitudinal folds in the fundic and pyloric regions. A single layer of columnar cells, PAS positive only in their apical portions, forms the epithelium. The convoluted tube-shape intestine is lined by simple columnar epithelial cells, which have microvilli at the apical surface. The wall of the esophagus and stomach are thicker than that of the intestine because of the thick muscle layer. There were numerous goblet cells in the intestine. There were numerous gastric glands in the submucosa layer ofthe cardiac stomach, but none were present in the pyloric region of the stomach. There were no pyloric caeca between the stomach and intestine. The enterocytes with microvilli contained rough endoplasmic reticulum, ribosomes and rounded bodies, and the gastric cells contained a well-developed Golgi apparatus.  相似文献   

17.
At the gastroesophageal junction, most vertebrates possess a functional lower esophageal sphincter (LES) which may serve to regulate the passage of liquids and food into the stomach and prevent the reflux of gastric contents into the esophagus. Snakes seemingly lack an LES and consume meals large enough to extend anteriorly from the stomach into the esophagus thereby providing the opportunity for the reflux of gastric juices. To explore whether snakes experience or can prevent gastric reflux, we examined post-feeding changes of luminal pH of the distal esophagus and stomach, the fine scale luminal pH profile at the gastroesophageal junction, and the morphology of the gastroesophageal junction for the Burmese python (Python molurus), the African brown house snake (Lamprophis fuliginosus), and the diamondback water snake (Nerodia rhombifer). For each species fasted, there was no distension of the gastroesophageal junction and only modest changes in luminal pH from the distal esophagus into the stomach. Feeding resulted in marked distension and changes in tissue morphology of the gastroesophageal junction. Simultaneously, there was a significant decrease in luminal pH of the distal esophagus for pythons and house snakes, and for all three species a steep gradient in luminal pH decreasing across a 3-cm span from the distal edge of the esophagus into the proximal edge of the stomach. The moderate acidification of the distalmost portion of the esophagus for pythons and house snakes suggests that there is some anterior movement of gastric juices across the gastroesophageal junction. Given that this modest reflux of gastric fluid is localized to the most distal region of the esophagus, snakes are apparently able to prevent and protect against acid reflux in the absence of a functional LES.  相似文献   

18.
Histological structures of esophagus and stomach tissue samples of Lacerta stellio have been studied, and glycosaminoglycan (GAG) distribution has been histochemically determined. Histologically, esophagus and stomach of L. stellio are composed of four layers: mucosa, submucosa, muscularis mucosae and serosa. Mucosa of esophagus is covered by simple columnar ciliated epithelium with many mucous secreting goblet cells and contains branched tubular glands.Stomach of L. stellio is composed of fundus (oral and aboral) and pylorus regions. Mucosa is covered by columnar epithelium. Fundic glands are branched tubular glands while pyloric glands are usually simple tubular glands. In both regions of the stomach, glands are subdivided into three areas as base, neck and isthmus. Both in the esophagus and stomach, muscular layer is in the form of smooth muscle having inner circular and outer longitudinal layers.According to the results obtained by Alcian Blue (pH 5.8)/Periodic Acid Schiff staining, stomach is similar to esophagus in that neutral mucins and hyaluronic acid (HA) are dominant in isthmus and neck regions of gland tissue of stomach. In the base of the stomach, only neutral mucins have been observed. HA has been observed to be dominant in all other regions of both stomach and esophagus, along with some but not much sulphated GAGs.  相似文献   

19.
The paddlefish (Polyodon spathula) is one of the most primitive and unique freshwater fishes of North America. It is adapted as a plankton filter-feeder. The wide mouth and greatly expansible pharyngeal cavity allows it to process a large quantity of water. Numerous setiform gillrakers, which operate against the flattened surfaces of the gill arches and opercula, are capable of filtering out small food particles. The abundance of taste buds and mucus secreting cells in the buccal cavity and pharynx probably aids in selecting and entangling the food. The first segment of the stomach is provided with peculiar, large longitudinal rods of fat which may help in selecting food from water by causing occlusion of the small lumen when the striated fibers of the muscularis contract. Teeth, unnecessary for microphagous fishes, are absent in adults. The digestive tube is one of the most complex present in fishes. It has two distinct divisions of the stomach and four distinct divisions of the intestine besides possessing a large caecum. Ciliated epithelial cells occur in many parts of the gut and may be an aid in moving or processing the small items of food. Besides the presence of cilia, other primitive features of the digestive tract include the lack of distinction between the esophagus and stomach, the presence of a spiral valve, and the presence of some of the diffuse pancreatic tissue within the wall of the gut. The numerous Peyer's patches in the wall of much of the intestine may be an immunological response to the heavy parasitic infestation.  相似文献   

20.
The histological characteristics of the digestive tract and the ultrastructure of mucosal cells of the stomach and intestine of rice field eel, Monopterus albus, are described to provide a basis for future studies on its digestive physiology. The digestive tract of the rice field eel is a long and coiled tube composed of four layers: mucosa, lamina propria‐submucosa, muscularis and serosa. The pharynx and oesophagus mucosa is lined with a stratified epithelium. The stomach includes the cardiac and pyloric portions and the fundus. Many gastric pits are formed by invaginations of the mucosal layer and tubular gastric glands formed by the columnar cells in the fundus. The intestine is separated from the stomach by a loop valve and divided into a proximal portion and a distal portion. The proximal intestinal epithelium consists of columnar cells with microvilli towards the lumen and goblet cells. The enterocytes are joined at the apical surface by the junctional complex, including the evident desmosomas. Numerous lysosomes and some vesicles are evident in the upper cytoplasm of the cells, and a moderate amount of endoplasmic reticulum and lysosomes are scattered in the supranuclear cytoplasm. The epithelium becomes progressively thicker and the folds containing large numbers of goblet cells are fewer and shorter in the distal portion of the intestine. At the ultrastuctural level, the columnar cells of the tubular gastric glands have numerous clear vacuoles and channels. A moderate amount of pepsinogen granules are present in the stomach. The enterocytes of the intestinal mucosa display a moderate amount of endoplasmic reticulum and lysosomes, and long and regular microvilli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号