首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organization of the 5S RNA gene cluster of Drosophila melanogaster is different in two Oregon R stocks that have been separated for a number of years. The Oregon R Yale population contains various different arrangements of the cluster. One of these is due to the insertion of a B104 element near one end of the cluster. Other arrangements lack the B104 insertion and have instead a variety of deletions originating in the vicinity of the B104 insertion site and removing from 0 to 60% of the 5S RNA genes without affecting nearby tRNA genes. In contrast, the Oregon R Heidelberg population has no B104 element in the 5S gene cluster and no heterogeneity in the arrangement of the cluster. We propose that transposable elements inserted at a genomic locus generate heterogeneity in a population at that locus due to excision of the element with and without accompanying deletions of flanking sequences. As a consequence, a fly population would accumulate a large number of deletions scattered throughout the genome in as many loci as contain transposable elements. We show further that D. melanogaster contains a large redundancy of 5S RNA genes since the 60% deletion of the cluster shows no visible phenotype when homozygous or when heterozygous against a total deletion of the entire 5S gene cluster.  相似文献   

2.

Background  

Several studies have shown that genomes contain a mixture of transposable elements, some of which are still active and others ancient relics that have degenerated. This is true for the non-LTR retrotransposon Helena, of which only degenerate sequences have been shown to be present in some species (Drosophila melanogaster), whereas putatively active sequences are present in others (D. simulans). Combining experimental and population analyses with the sequence analysis of the 12 Drosophila genomes, we have investigated the evolution of Helena, and propose a possible scenario for the evolution of this element.  相似文献   

3.
Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (~3.5 Gb) and the well‐documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain‐containing Gypsy LTR retrotransposons (‘chromoviruses’), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole.  相似文献   

4.
5.
Transposable elements are abundant, dynamic components of the genome that affect organismal phenotypes and fitness. In Drosophila melanogaster, they have increased in abundance as the species spread out of Africa, and different populations differ in their transposable element content. However, very little is currently known about how transposable elements differ between individual genotypes, and how that relates to the population dynamics of transposable elements overall. The sister species of D. melanogaster, D. simulans, has also recently become cosmopolitan, and panels of inbred genotypes exist from cosmopolitan and African flies. Therefore, we can determine whether the differences in colonizing populations are repeated in D. simulans, what the dynamics of transposable elements are in individual genotypes, and how that compares to wild flies. After estimating copy number in cosmopolitan and African D. simulans, I find that transposable element load is higher in flies from cosmopolitan populations. In addition, transposable element load varies considerably between populations, between genotypes, but not overall between wild and inbred lines. Certain genotypes either contain active transposable elements or are more permissive of transposition and accumulate copies of particular transposable elements. Overall, it is important to quantify genotype‐specific transposable element dynamics as well as population averages to understand the dynamics of transposable element accumulation over time.  相似文献   

6.
Summary The alcohol dehydrogenase gene (Adh gene) ofDrosophila affinidisjuncta is expressed at a higher level in the larval midgut and Malpighian tubules than the homologous gene fromDrosophila hawaiiensis. This study analyzed thecis-acting sequences responsible for these regulatory differences in larval tissues ofDrosophila melanogaster transformants. A series of 10 chimeric and deletedAdh genes was introduced into the germ line ofD. melanogaster, and tissue-specific expression levels were quantified by gel electrophoresis of tissue extracts. Sequences in the upstream region of the two genes had the strongest influence on enzyme production in the midgut and Malpighian tubules. Other sequence elements also showed effects, some of which were tissue specific. Most gene fragments displayed context-dependent effects, thus supporting the proposed model of polygenic regulation ofAdh gene expression.  相似文献   

7.
To analyze the behavior of endogenous transposable elements under genomic stress, aDrosophila melanogaster inbred line was submitted to three kinds of viral perturbations. First, a retroviral plasmid containing the avian Rous Associated Virus type 2 (RAV-2) previously deleted for the viral envelope coding gene (env) was introduced by P element transformation into theDrosophila genome. An insertion of this avian retroviral sequence was detected byin situ hybridization in site 53C on polytene chromosome arm 2R. Second,Drosophila embryos were injected with RAV-2 particles produced by cell culture after transfection with the retroviral plasmid. Third, theDrosophila melanogaster inbred line was stably infected by the sigma native virus. It appears that neither the offspring of the flies in which the viral DNA was found integrated nor those from the infected sigma flies showed copia or mdgl element mobilization. Injection of the avian RAV-2 particles led, however, to the observation of somatic transpositions of mdgl element on the 2L chromosome, the copia element insertion pattern remaining stable. Thus, endogenous transposable elements show more instability in sublines injected with exogenous viral particles than in a transgenic subline containing a foreign viral insert, all transposable elements not being equally sensitive to such genomic stress. Correspondence to: I. Jouan-Dufournel  相似文献   

8.
No mariner-like elements (MLEs) have been described until now in the genome of Drosophila melanogaster despite many experiments using molecular methods. However, analyses of sequence data from the Berkeley Drosophila Genome Project show that there are DNA sequences corresponding to pieces of MLE in the genome of D. melanogaster. The sequences of these elements have diverged considerably (about 40%) from any other sequences observed elsewhere. Moreover, the putative amino acid sequences encoded by the best conserved regions reveal that these sequences are clearly homologous to MLEs transposase.  相似文献   

9.
Transposable elements are mobile sequences found in nuclear genomes and can potentially serve as molecular markers in various phylogenetic and population genetic investigations. A PCR-based method that utilizes restriction site variation of element copies within a genome is developed. These patterns of site variation, referred to as transposon signatures, are useful in differentiating between closely related groups. Signature data using the magellan retrotransposon, for example, is useful in examining relationships within the genus Zea and Tripsacum. This method allows transposable elements, or even other multiple-copy nuclear DNA sequences, to be generally utilized as molecular markers in discriminating between other closely related species and subspecies.  相似文献   

10.
In situ hybridisation to mitotic chromosomes shows that sequences homologous to different Drosophila melanogaster transposable elements are widely distributed not only in beta but also in alpha-heterochromatin. Clusters of these sequences are detected in most proximal positions. They colocalise with known satellite sequences in several regions, but are also located in places where no known sequence has been mapped so far. The pattern of hybridisation is dinstinctive and specific for each element, and presents constant features in six different D. melanogaster strains studied. The entirely heterochromatic Y chromosome contains large amounts of these sequences. Additionally, some of these sequences appear to be present in substantial quantities in the smallest minichromosome of Drosophila, Dp(1;f)1187.  相似文献   

11.
Regulation of the vertebrate actin multigene family involves the recognition of various regulatory sequences (cis-acting elements) that specify the distinct tissue type and developmental program of expression for each actin paralogue, which implies that the distribution of cis-acting elements may be unique for each paralogue gene. To elucidate the evolution of these unique distribution patterns, we improved a method to scan for cis-acting elements in the 5′ flanking regulatory region of genes and used it to analyze five cis-acting elements (SRE, MyoD binding site, Elk-1 binding site, positive and negative YY1 binding sites) of six actin paralogue genes (β and γ cytoplasmic actins, α and γ smooth muscle actins, and α skeletal and α cardiac actins) among various vertebrates. It was shown that although an element(s) may exist in all paralogue genes of the same species, its numbers, compositions, and distribution patterns or even sequences vary remarkably among paralogues, which contributes to their different tissue- and developmental-specific expression. However, each pair of coexpressed paralogues has some certain similarity in distribution patterns. Furthermore, among various orthologues of actin genes derived from diverse vertebrates, the sequences, numbers, and distribution patterns of these cis-acting elements are highly conserved or even identical in the long run of phylogeny of vertebrates. Taken together, the results described above strongly indicate that not only the structures of actins but also their expression patterns are essential in both the phylogeny and the physiology of vertebrates. The distribution patterns of cis-acting elements of various actin genes can be regarded as indicators of both horizontal (paralogous) and vertical (orthologous) evolution of actins. Received: 1 March 1999 / Accepted: 6 August 1999  相似文献   

12.
13.
LTR retrotransposons are the most abundant transposable elements in Drosophila and are believed to have contributed significantly to genome evolution. Different reports have shown that many LTR retrotransposon families in Drosophila melanogaster emerged from recent evolutionary episodes of transpositional activity. To contribute to the knowledge of the evolutionary history of Drosophila LTR retrotransposons and the mechanisms that control their abundance, distribution and diversity, we conducted analyses of four related families of LTR retrotransposons, 297, 17.6, rover and Tom. Our results show that these elements seem to be restricted to species from the D. melanogaster group, except for 17.6, which is also present in D. virilis and D. mojavensis. Genetic divergences and phylogenetic analyses of a 1-kb fragment region of the pol gene illustrate that the evolutionary dynamics of Tom, 297, 17.6 and rover retrotransposons are similar in several aspects, such as low codon bias, the action of purifying selection and phylogenies that are incongruent with those of the host species. We found an extremely complex association among the retrotransposon sequences, indicating that different processes shaped the evolutionary history of these elements, and we detected a very high number of possible horizontal transfer events, corroborating the importance of lateral transmission in the evolution and maintenance of LTR retrotransposons.  相似文献   

14.
Summary A 190 by insertion is associated with the white-eosin mutation in Drosophila melanogaster. This insertion is a member of a family of transposable elements, pogo elements, which is of the same class as the P and hobo elements of D. melanogaster. Strains typically have many copies of a 190 by element, 10–15 elements 1.1–1.5 kb in size and several copies of a 2.1 kb element. The smaller elements all appear to be derived from the largest by single internal deletions so that all elements share terminal sequences. They either always insert at the dinucleotide TA and have perfect 21 bp terminal inverse repeats, or have 22 by inverse repeats and produce no duplication upon insertion. Analysis by DNA blotting of their distribution and occupancy of insertion sites in different strains suggests that they may be less mobile than P or hobo. The DNA sequence of the largest element has two long open reading frames on one strand which are joined by splicing as indicated by cDNA analysis. RNAs of this strand are made, whose sizes are similar to the major size classes of elements. A protein predicted by the DNA sequence has significant homology with a human centrosomal-associated protein, CENP-B. Homologous sequences were not detected in other Drosophila species, suggesting that this transposable element family may be restricted to D. melanogaster.  相似文献   

15.
16.
17.
Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.  相似文献   

18.
In situ hybridization on polytene chromosomes of Drosophila melanogaster was used to compare the insertion patterns of copia and mdgl transposable elements on chromosome 2 in male gametes sampled by two different methods: (i) by crossing the males tested with females from a highly inbred line with known copia and mdgl insertion profiles; (ii) by crossing the same males with females from a marked strain, and analysing the resulting homozygous chromosomes. Crossing of the males with the inbred line led to homogeneous insertion profiles for both the copia and mdgl elements in larvae, thus giving an accurate estimation of the patterns in the two gamete classes of each male. Crossing with the marked strain led, however, to heterogeneity in insertion patterns of the copia transposable element, while no significant polymorphism was observed for mdgl. The use of balancer chromosomes is thus not an adequate way of inferring transposable element insertion patterns of Drosophila males, at least for the copia element. This technique could, however, be powerful for investigating the control of movements of this element.  相似文献   

19.
In this paper we report a new retrotransposon-like element of Drosophila melanogaster called Tirant. This sequence is moderately repeated in the genome of this species and it has been found to be widely dispersed throughout its distribution area. From Southern blot and in situ analyses, this sequence appears to be mobile in D. melanogaster, since its chromosome location and the hybridization patterns vary among the different strains analyzed. In this way, partial sequencing of Tirant ends suggests that it is a retrotransposon, since it is flanked by two LTRs. The presence of sequences homologous to Tirant has been also investigated in 28 species of the genus Drosophila by means of Southern analyses. These sequences were only detected in species from melanogaster and obscura groups. These data suggest that ancestral sequences of Tirant appeared after the Sophophora radiation and before the divergence of those groups. Received: 1 January 1995 / Accepted: 20 August 1995  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号